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Abstract

This study develops a model of dynamic oligopoly competition in large procurement
auction markets and applies this to Texas Department of Transportation (TxDOT)
highway construction and maintenance contracts. Forward-looking firms enter, exit,
grow, and gain experience while competing in a sequence of low-price, sealed-bid auc-
tions. Firms play a Moment-based Markovian Equilibrium (MME) similar in spirit to
Ifrach and Weintraub (2017), rendering analysis tractable even in markets with hun-
dreds of firms. Structural estimates based on TxDOT data from 2000-2012 highlight
the significant role of dynamic factors like firm experience in shaping market outcomes.
The research intends to evaluate the impact of procurement mechanism design, includ-
ing reserve price policies and eligibility requirements, through counterfactual analysis
of long-run industry responses to alternative mechanisms.

1 Introduction

Suppliers in many procurement markets, such as for highway construction and maintenance

contracts, are specialized firms. In such markets, the rules of the procurement mechanism

can endogenously affect not only how currently active firms bid in specific auctions, but (in

the long run) how many firms enter or exit the industry, as well as the composition of the

firms that remain. For example, while the classic Myerson (1981) optimal mechanism may

minimize procurement costs in the short run, low reserve prices could also decrease profits and

thereby increase long-run industry exit. More fundamentally, in markets where profitability
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depends, at least in part, on dynamic considerations such as investment or learning by doing,

the procurer may reap long-run savings from policies that allow new firms to win contracts

and develop expertise, even if these increase short-run procurement costs. Theoretical work

has clearly established that mechanism design can have large impacts on long-run industry

composition. Very little is known empirically, however, about these long-run channels of

procurement policy design.

This study explores long-run industry dynamics, and the role of procurement policy in

shaping these, within a major low-bid procurement auction market: that for Texas Depart-

ment of Transportation (TxDOT) highway construction and maintenance contracts. Using

data from January 2000 to December 2013, we explore long-run entry, exit, and firm evo-

lution patterns in the TxDOT market. While the overall number of prime contractors is

relatively stable over time, there is substantial churn in the set of active firms, with 10-15

percent of previously active prime contractors exiting and another 10-15 percent entering the

market in any given year.1 Of these new entrants, approximately one third enter through

waived projects, while the remainder enter through unwaived projects. More than half of

firms entering the prime contractor market through waived projects eventually become pre-

qualified prime contractors, often with a lag of several years between first entry and full

prequalification. We then turn to a series of reduced-form regressions exploring how firms’

bidding decisions depend on firm experience, firm size, qualification status, and backlog,

finding patterns consistent with learning by doing in the TxDOT market.

Motivated by these empirical patterns, we develop a dynamic structural model that

embeds a model of spot market competition via low-price auctions within an overarching

dynamic oligopoly model. Firms in the industry are forward-looking and differ on four state

dimensions: experience, backlog, capacity, and prequalification status. Following Arcidi-

acono, Bayer, Blevins, and Ellickson (2016), we frame our overarching dynamic model in

continuous time, with firms receiving qualification opportunities, bidding opportunities, and

1Note that entry and exit from the prime contractor market does not imply firm-level entry and exit,
since firms may remain active as subcontractors on TxDOT contracts or in other construction activities.
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industry exit opportunities at exogenous Poisson rates. Upon receiving a bidding oppor-

tunity, firms observe their completion costs and compete in a low-price sealed-bid auction

against other participating bidders. Firm-level state variables evolve based on firm choices,

auction outcomes, and exogenous transition events. A pool of potential entrants receive

entry opportunities at exogenous Poisson rates and make forward-looking entry decisions,

with entering firms remaining active until they exit the industry.

The TxDOT market involves a large number of active firms—on average about 700 per

year over our sample. Consequently, a standard Markov Perfect Equilibrium (MPE), which

assumes that each firm exactly tracks each rival’s state, is both behaviorally implausible and

computationally infeasible. We, therefore, adopt the Moment-based Markov Equilibrium

(MME) solution concept of Ifrach and Weintraub (2017).2 Adapted to our context, the key

simplifying assumption defining a MME is that, when forecasting its profits from future

auctions, each firm tracks only its own state and a vector of aggregate industry moments,

not the whole industry state. This provides a vastly more tractable and, in our view, more

plausible model than MPE in markets with many firms. Importantly, however, this simpli-

fication applies only to future auctions; once paired with a known set of rivals in a specific

auction, each firm conditions its bidding strategy on the specific states of each rival bidder.

We thereby embed the rich strategic auction-level interactions typical in the empirical auc-

tion literature within a MME model of dynamic oligopoly which is tractable even in very

large markets. It seems realistic to think that players are likely to only have access to or

consider summary statistics, or a subset of monitoring data regarding the state variables in

the game when making entry/exit decisions, but account for more information at the bidding

stage as they need to monitor only a few players.

Drawing on classic results from the empirical auction literature (e.g. Guerre, Perrigne,

and Vuong (2000)), we show that our model yields a remarkably simple conditional choice

probability (CCP) representation of MME continuation values. We estimate our model using

2Other recent papers also make use of this approach, see for example Jeon (2022); Corbae and D’Erasmo
(2021); Gowrisankaran et al. (2023); Gerarden (2023); Sears at al. 2022.

3



TxDOT data from 2000-2012, finding that dynamic firm-level factors such as experience

and capacity have substantial impacts on both project completion costs and continuation

values. This in turn suggests that procurement design could have important long-run effects.

In work in progress, we are implementing several counterfactuals which aim to quantify

these long-run effects, including for example changes to TxDOT’s prequalification waiver

program, implementation of a static Myerson optimal mechanism, and switching from first-

price auctions to second-price auctions (noting, as pointed out by Saini (2012), that it is

typically harder for weak bidders to win and gain experience in second-price auctions). We

emphasize, however, that our model can also be applied to study the long-run industry

effects of a wide range of other potential counterfactual policies, almost all of which would

be informative since such long-run effects are presently very poorly understood.

This study aims to contribute to a small but growing literature on dynamic auctions, in-

cluding Jofre-Bonet and Pesendorfer (2003), Groeger (2014), Balat (2015), and Saini (2012)

among others. With the exception of Saini (2012), who explores Markov-perfect dynam-

ics in a computational simulation exercise, these prior studies principally analyze bidding

behavior among a fixed (exogenous) set of industry participants, accounting for dynamic

factors affecting bidding and entry, such as capacity constraints or recent entry experience.

In contrast, we aim to analyze the long-run determinants of industry structure, accounting

for these factors as well as firm-level entry, exit, and experience. To our knowledge, this long-

run industry view has never been applied to a procurement auction market, and will provide

new insight into many counterfactual questions that have been unexplored heretofore.

This preliminary draft is organized as follows. Section 2 provides institutional back-

ground on the TxDOT market and describes patterns of industry-level entrantsy and exit,

auction-level bidding, and firm-level evolution within it. Section 3 develops our dynamic

oligopoly model and derives the CCP representation of continuation values which is the key

to our empirical strategy. Section 4 provides estimates of structural parameters, continuation

values, and completion costs derived from the model. Section 5 concludes with a brief dis-
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cussion of intended counterfactuals. Appendix A provides further estimation details, while

Appendix B provides detailed variable definitions.

2 Background, data, and descriptive statistics

TxDOT is responsible for building and maintaining all roadways in Texas. TxDOT strives

to partner with contractors who achieve high-quality results for the best value to create a

safe and reliable transportation system for Texas. Hence, for most projects, TxDOT requires

firms to become pre-qualified before holding plans or submitting bids. Pre-qualification is

intended to ensure that only financially sound companies with proven track records com-

pete for TxDOT projects, and requires the qualifying firm to provide an independently

audited financial statement along with a completed ‘Confidential Questionnaire’ and other

required supporting documents. TxDOT waives the full prequalification requirement, how-

ever, for some small construction, maintenance, and special projects. To compete for ‘waived’

projects, firms need only complete a simpler ‘Bidder’s Questionnaire,’ with no requirement

for a financial audit. Conversations with TxDOT officials suggest that one goal of ‘waived’

projects is to provide an avenue for currently non-qualified bidders to gain experience bidding

for TxDOT projects.

TxDOT announces projects to be let at least 28 days in advance. The project listing

specifies a detailed description of the project, the number of tasks needed to complete the

project, work type, location of the project, days allowed to complete the project, funding

agency (state or federal), and the engineer’s cost estimate (ECE) in addition to whether

the project is ‘waived’. To bid for a project, eligible firms must request plans, after which

they may prepare and submit itemized bids. Once the bidding period expires, TxDOT

tabulates bids and determines the winning bidder. The winning bidder is determined solely

by price—all awards are to the lowest eligible bidder, although TxDOT also reserves the

right to reject all bids. After the project is awarded, TxDOT discloses the identities of all
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firms that tendered a bid and the amount of each bid for each contract.

2.1 Data

We have data for all construction projects auctioned by TxDOT from January 1998 to De-

cember 2013. For each project, we observe all information in the TxDOT project listing,

including in particular the ECE, the type and location of work, and whether or not quali-

fication requirements were waived. We also observe all submitted bids, the identities of the

bidding firms, and whether or not each project was ultimately awarded.

We categorize projects into six types based on the material shares of a project. The “Stan-

dard Specifications for Construction and Maintenance of Highways, Streets, and Bridges”

code book adopted by TxDOT describes the six material groups for projects based on bid

items. These six material cost shares are constructed from detailed information on bid items

and the project’s overall engineering cost estimate. These include: 1) asphalt surface work

(i.e., hot-mix asphalt); 2) earth work (i.e., excavation); 3) miscellaneous work (i.e., mobiliza-

tion); 4) structures (bridges); 5) subgrade (i.e., proof rolling); and 6) lighting and signaling

work (i.e., highway sign lighting fixtures). We also categorize projects into five zones iden-

tified by TxDOT in order to control for physical features of areas as they require different

grades of material to complete a project.

We also construct the following additional firm-level variables. We measure each firm’s

scope of work outstanding with TxDOT via its backlog, which we construct by summing

across the non-completed value of existing contracts. For each firm-project pair, we construct

the distance between project location and firm location, which we include as a proxy for

equipment transportation costs to the project. We define a firm as entering the TxDOT

market immediately before the date of its first observed activity. We define a firm as exiting

the TxDOTmarket if it goes 12 consecutive months without activity, where activity is defined

as holding plans, submitting bids, or having non-zero work outstanding (backlog). In this

case, we interpret the firm as exiting immediately following its last activity. As a proxy for
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firm capacity, we consider the maximum, over the past 18 months, of a monthly capacity

usage measure equal to the firm’s initial backlog plus the sum of ECEs among projects for

which the firm held plans within the month.3 We normalize this firm-level capacity variable

by the sum of capacities for all firms within the month to obtain a proxy for the market

share of each firm over time. Finally, we classify each firm as CQ (qualified) or not according

to the first date it holds plans on a project with normal qualification requirements. If this is

also the date of first activity, we classify the firm as entering with CQ status; otherwise, we

classify it as non-CQ until the date of the first non-waived auction for which it holds plans.4

Our analysis is based on data from January 2000 onward. We use data from 1998 and

1999 to construct firm-level historical variables such as backlog, activity dates, qualification

status, and win counts.5 Backlog, bids and ECE are expressed in January 2000 constant-

dollar values.

2.2 Descriptive statistics

In Table 1, we provide summary statistics for projects let each year according to qualifica-

tion status. For each year, we report the average number of plan holders, bidders, engineer’s

cost estimate, relative bid, and winning bid for those contracts. When considering waived

projects, we further partition the number of potential and actual bidders by their prequal-

3Under TxDOT rules, a contractor may request project details only for projects whose total ECEs do
not exceed pre-qualified bidding capacity less the firm’s backlog. This institutional feature motivates us to
measure within month used capacity as the firm’s backlog plus the sum of ECEs among projects for which
the firm held plans within the month. Since each monthly used capacity must be less than the firm’s overall
capacity, we then take the maximum over 18 months to better approximate actual capacity.

4CQ status is granted to a firm once it reaches certain requirements in terms of experience and resources
upon submitting a simple documentation. While we do not observe the exact date of qualification, we observe
the first time the firm held plans requiring qualification. While under TxDOT rules the certification is only
valid for 12 months, we consider qualification, once achieved, to be a persistent state, since the main barrier
to qualification is demonstrating the required experience and financial resources rather than the paperwork
needed to obtain the formal certification. In our sample, 362 firms were required to requalify, and 343 firms
were requalified within three months. The remaining 19 firms qualified within a maximum of eight months.

5Note that we have identified 247 out-of-state firms that participate in TxDOT auctions. Among these
firms, 214 participate as prequalified firms and, on average, bid on projects worth about $10 million. Since
these large firms have a history of winning projects in multiple states, we set their initial win count to
28, corresponding to the average win count among Texas-based prequalified firms. The remaining 32 non-
prequalified firms bid on projects worth about $215,000. We consider them inexperienced firms.
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Table 1: Summary statistics by project types

Year Waived projects Unwaived projects
Projects ECE ($)a Relative n nq=1 Projects ECE ($)a Relative n

Bid Win Bid Win
2000 156 195,748.90 1.163 0.979 4.397 3.551 914 2,763,536.00 1.049 0.942 4.544
2001 131 360,249.50 1.146 0.987 4.168 3.687 713 3,425,191.00 1.060 0.953 4.306
2002 111 281,485.10 1.064 0.897 5.730 4.973 651 4,207,879.00 1.006 0.896 5.048
2003 153 184,828.50 1.128 0.923 5.301 4.699 645 5,092,556.00 1.035 0.934 4.859
2004 154 182,233.80 1.116 0.957 4.740 4.292 701 4,637,363.00 1.082 0.982 4.317
2005 129 128,479.20 1.217 1.032 3.891 3.636 755 3,292,533.00 1.169 1.049 3.913
2006 110 171,611.00 1.163 0.990 3.891 3.491 785 3,031,770.00 1.140 1.026 3.908
2007 86 125,947.50 1.172 0.991 4.477 4.140 671 3,333,504.00 1.053 0.928 4.441
2008 44 117,954.10 1.140 0.973 5.636 4.886 500 2,655,836.00 1.076 0.947 5.488
2009 87 142,693.90 1.004 0.818 7.207 6.632 741 2,973,292.00 0.940 0.803 6.744
2010 153 150,868.00 1.145 0.954 5.739 5.510 801 2,646,686.00 1.045 0.923 5.542
2011 138 120,375.20 1.162 1.014 4.978 4.725 652 3,966,039.00 1.089 0.971 5.147
2012 87 103,464.80 1.173 0.978 5.092 4.816 642 2,830,953.00 1.119 1.004 4.533
2013 68 102,144.10 1.176 0.979 5.294 4.927 626 2,843,199.00 1.090 0.992 4.438
All 1,607 177,490.30 1.136 0.964 4.958 4.492 9,797 3,386,572.00 1.061 0.954 4.787
aECE is in January 2000 constant-dollar value.

ification status. For most years, unwaived contracts see slightly more plan holders and

bidders than waived contracts. There are about four non-prequalified plan holders and one

non-prequalified bidders on average present in a waived contract. On average, the ECE

for waived projects is about $177,500 while the ECE for unwaived projects is about $3.39

million. The average relative bid is about 1.136 for waived projects, while, for unwaived

projects, the relative bid is about 1.061. However, there is not much difference between

waived relative winning bids (0.964) and unwaived relative winning bids (0.954).

Conversations with TxDOT officials indicate that TxDOT considers waived projects to

be an avenue by which small firms can enter the TxDOT market, gain experience and,

subsequently, grow and prequalify while increasing competition. In Figure 2, we show how

non-prequalified firms progress into prequalified firms as they age. When constructing this

figure, we consider only non-prequalified firms that entered the TxDOT market since January

2000. Then, we consider counts—the number of firms that prequalify and bid as they stay

in the market. The hollow circles denote the actual proportion of firms that entered as non-

prequalified firms and became prequalified. We also plot a fractional polynomial prediction

of this status evolution and show it with a dashed line.6

6See Royston and Altman (1994) and Royston and Sauerbrei (2008) for details on fractional polynomial
estimation.

8



Figure 1: Fraction of non-qualified entrants becoming qualified over time in the market

In Table 2, we present summary statistics by firm types. In Column 1, we present

statistics for all firms, while in Columns 2 and 3, we present summary statistics for currently

prequalified and non-prequalified firms. During our sample period, we observe 2,483 unique

firms in the TxDOT market, who in total submitted 54,864 bids. The average ECE was

about $2.9 million, while the average bid relative to the ECE was about 1.07. The winning

bid is about 0.96 relative to the ECE. On average, all firms have won about 25 contracts

in the past, while their market share is about 0.3 percent. On average, a firm’s backlog is

worth about $9.8 million, and the distance to a project location from its location is about

234 miles. On average, one can observe firms in the TxDOT market for about 55 months.

We observe 1,906 currently prequalified firms (Column 2). Note that these firms may

initially enter as non-prequalified firms. In Column 3, we report summary statistics for

currently non-prequalified firms. In our sample period, 348 of these 911 non-prequalified

firms transitioned into qualified status. As we can see, prequalified firms bid on projects

that are more than ten times larger than projects bid by an average non-prequalified bidder.

Importantly, on average, prequalified bidders have won about 25 more projects than non-

prequalified bidders. While the distance to a project location is similar between prequalified
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Table 2: Summary statistics by firm types

Variable Current firm type
All Prequalified Non-prequalified
(1) (2) (3)

Number of firms 2,483 1,906 911
Number of bids 54,866 54,118 748
Average ECEa 2.934 2.974 0.257

(8.126) (8.178) (0.770)
Average relative bid 1.072 1.071 1.091

(0.245) (0.242) (0.363)
Average relative winning bid 0.955 0.955 0.934

(0.175) (0.175) (0.213)
Experience (past win counts) 24.881 26.882 1.165

(41.059) (42.132) (4.288)
Firm’s average market share 0.003 0.003 0.00004

(0.007) (0.007) (0.0001)
Average backloga 9.807 10.629 0.067

(34.692) (36.004) (1.138)
Average distance to the project location 234.369 234.410 232.604

(335.750) (337.164) (267.258)
Months in the market (in months) 55.351 57.171 24.740

(44.022) (44.355) (25.573)
aIs in January 2000 constant-dollar (in millions) value.
Standard deviations are in parentheses.

and non-prequalified bidders, prequalified bidders’ average backlog is about $10 million more

than non-prequalified bidders, whose backlog is only about $67,000. Further, an average non-

prequalified firm survives only about 25 months in the TxDOT market, which is less than

half the time an average prequalified bidder stays in the TxDOT market (57 months.)

We next explore patterns of entry, exit and evolution in the TxDOT market. We observe

about 2,500 distinct firms ever active in the TxDOT market. In Figure 2, we plot the number

of distinct firms active in each year of our sample, as well as the number of these which had

yet to qualify at some point in the year. On average, between 600 and 850 firms are active

each year. While most active firms are prequalified firms, in each year a non-negligible

minority of active firms spend at least part of the year non-qualified. Moreover, as we show

next, these not-yet-qualified firms make up a larger share of new entrants than firms overall.

The TxDOT market also has substantial churn, with more entry and exit than the net
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Figure 2: Number of active firms per year
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changes illustrated in Figure 2 would suggest.7 Figure 3 plots the number of firms entering

and exiting the market each year in our sample, broken down by prequalification status at

the time of entry / exit. In most years, the sum of entering and exiting firms exceeds one

hundred, which is large relative to the number of active firms. Note further that some firms

that enter as non-prequalified will eventually become qualified; thus, the non-prequalified

exits illustrated in Figure 3 should be interpreted as firms which never qualified.

Finally, we explore firm-level survival patterns in the TxDOT market. Toward this end,

we estimate a simple Cox proportional hazard model, where the dependent variable is a

firm’s exit date. In Figure 4, we then plot survival probabilities by time in the market and

prequalification status. As can be seen in Figure 4, firms that enter the market and remain

unqualified tend to exit the market relatively quickly: almost 80 percent exit within the first

year. Meanwhile, firms that become qualified tend to remain in the market much longer, with

more than half of firms active for at least two years. Even these firms, however, experience

7Note that a firm may change its name if it moves from a ‘partnership’ to a ‘limited liability company.’ For
example, ‘DGS Construction’ could be renamed as ‘DGS Construction Ltd.’ In this case, the firm will receive
a new TxDOT identification number. In consecutive months, we find 19 instances where a firm changed its
name to a similar name as mentioned above when located in the exact geocoded location. However, in our
setting, we consider these two names to belong to the same entity.
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Figure 3: Number of firms entering and exiting the TxDOT market per year
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significant attrition, with only about 35 percent remaining active for at least five years.

2.3 Descriptive regressions

We next explore how bidders’ backlog, qualification status, and experience impact bidding,

final auction outcomes, and industry survival patterns.

Table 3 reports results from several linear regressions of log bids on the set of firm,

competitor, and project characteristics described above. Columns 1 and 2 include all bids,

with column 2 additionally including firm-level fixed effects which control for persistent

bidder-level unobservable heterogeneity. Meanwhile, columns 4 and 5 estimate the same

specifications as in columns 1 and 2, but restricting attention to bidders who eventually win

at least seven auctions. By construction, this subsample drops bids by firms with very few

wins, which may differ systematically from more successful bidders. Encouragingly, across

all specifications, results are very similar. Bearing in mind that negative signs indicate lower

(more aggressive) bids, firms bid more aggressively with more experience (past wins), less

aggressively with more backlog, and less aggressively when farther from a project. Firms
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Figure 4: Survival probabilities for prequalified and non-prequalified firms
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also bid more aggressively when facing more bidders, less aggressively when facing rivals

with more backlog, and less aggressively when facing a non-qualified rival. Importantly, the

negative coefficient on experience changes only slightly even after including firm-level fixed

effects and / or focusing on successful firms, indicating that our estimated experience effect

represents structural state dependence rather than persistent unobserved bidder heterogene-

ity. We also note that the magnitude of the coefficient for experience is small. However, the

cumulative effect of this variable is important. For example, a firm that has won 25 times in

the past could bid on average 2.7 percent lower compared to its initial stage, ceteris paribus.

Table 4 explores the cost-benefit tradeoffs facing TxDOT when waiving prequalification

requirements. From TxDOT’s perspective, waiving qualification requirements has two po-

tential benefits: in the short run, it may increase the number of competitors in the waived

auction, and in the long run, by allowing small firms to gain experience, it may make these

firms more effective competitors. Offsetting these potential benefits, there may be a risk

that insofar as it leads to awarding contracts to less-experienced or less capable firms, waiv-

ing qualification requirements may lead to greater cost overruns or delays. In columns 1-3,

we regress two measures of such indirect costs, the number of additional days to complete
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Table 3: Descriptive bid regressions

Variable Log of bids
All bidders Bidders with

wincounts ⩾ 7
(1) (2) (3) (4)

Experience (log of past win counts) -0.008 -0.005 -0.006 -0.005
(0.001) (0.002) (0.001) (0.002)

Firm’s market share 0.008 0.003 0.008 0.004
(0.001) (0.002) (0.001) (0.002)

Log of backlog 0.002 0.007 0.003 0.005
(0.001) (0.002) (0.001) (0.001)

Prequalified firm 0.025 -0.009 0.009 -0.027
(0.010) (0.017) (0.027) (0.028)

Log of firm’s distance to the project location 0.012 0.015 0.014 0.015
(0.001) (0.001) (0.001) (0.001)

Waived auction 0.013 0.027 0.013 0.028
(0.004) (0.004) (0.004) (0.004)

Log of ECE 0.946 0.939 0.942 0.938
(0.001) (0.001) (0.001) (0.001)

Log of number of tasks to complete the project 0.061 0.064 0.065 0.065
(0.002) (0.002) (0.002) (0.002)

Log of number of bidders -0.056 -0.059 -0.055 -0.057
(0.003) (0.003) (0.003) (0.003)

Sum of market share of all plan holders in the auction 0.297 0.274 0.312 0.269
(0.055) (0.055) (0.057) (0.057)

Log sum of past win counts of all plan holders in the auction -0.007 -0.005 -0.006 -0.005
(0.001) (0.001) (0.001) (0.001)

Log sum of backlog of all plan holders in the auction 0.006 0.004 0.006 0.004
(0.001) (0.001) (0.001) (0.001)

Log of rivals’ minimum distance to the project location -0.001 0.001 -0.000 0.001
(0.001) (0.001) (0.001) (0.001)

Total backlog of all firms in the market Yes Yes Yes Yes
Total number of prequalified firms in the market Yes Yes Yes Yes
Total number of competitors in the market Yes Yes Yes Yes
Total value of a new building permits in Texas Yes Yes Yes Yes
Fed/State effect Yes Yes Yes Yes
Project type and zone effects Yes Yes Yes Yes
Firm effects Yes Yes
Observations 54,866 54,866 49,412 49,412
R2 0.982 0.984 0.982 0.983
Experience of all plan holders, total value of backlog of all plan holders, total number of competitors,
and the total value of a new building permits in Texas are in logs.
Robust standard errors are in parentheses.
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a project and the log of final project payments, on characteristics of the project and the

winning bidder. Note that in this exercise, for comparison purposes, we use waived and

un-waived auctions with ECE less than $300,000. Results indicate that awarding to a more

experienced firm reduces both additional days (column 1) and cost overruns (columns 2 and

3) significantly; for final payments, this holds whether we condition on the log ECE (in

column 2) or the winning bid (in column 3). Awarding through a waived auction does not

significantly increase the final payment or delay conditional on both ECE and (column 2)

and the final bid (column 3). Award to a qualified firm may also reduce both delays and final

payments, but this effect is weakly significant at best. Lastly, in column 4, we report results

from a Poisson regression of the number of bidders on observed project characteristics. These

results confirm that, as expected, waiving qualification requirements significantly increases

the number of bidders.

As mentioned before, one of the implicit objectives of TxDOT waived projects is to

create an avenue for small firms to enter the TxDOT market, gain experience, grow, and

increase competition. Increasing competition could arise either from firms surviving longer

and increasing the number of players in the market or by bidding aggressively as they evolve

and gain experience. To understand the role of experience in exit rates, we estimate a simple

logit model where the dependent variable takes the value of one when a firm has exited the

market and zero otherwise, as described above. These results are reported in Table 5. In the

first two columns, we use only the sample of firms that entered after January 2000. In the

next two columns, we use all firms, including incumbent firms, i.e., firms that entered prior

to January 2000. In all specifications, results indicate that prequalified firms and firms with

experience are less likely to exit. Also, firms with large market shares survive longer.
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Table 4: Regression results for auction outcomes

Variable Additional Log(final pay) Number of
days bidders

OLS PPML
(1) (2) (3) (4)

Experience (log of past win counts) -1.065 -0.040 -0.033
(0.317) (0.010) (0.009)

Firm’s market share 1.255 -0.001 0.003
(1.219) (0.019) (0.015)

Log of backlog 0.206 0.060 0.046
(0.462) (0.015) (0.014)

Prequalified firm -3.066 -0.052 -0.031
(2.015) (0.028) (0.021)

Waived auction 0.899 0.049 0.051 0.067
(0.918) (0.019) (0.016) (0.024)

Log of ECE 3.369 0.977 0.062
(0.759) (0.014) (0.021)

Log of bid 1.004
(0.010)

Log of number of tasks to complete the project 0.588 0.070 -0.014 -0.048
(0.589) (0.012) (0.010) (0.015)

Log of number of bidders -2.106 -0.153 -0.005
(0.722) (0.015) (0.012)

Log sum of market share of all plan holders in the auction -9.498 1.953 0.802
(25.559) (0.550) (0.436)

Log of total value of a new building permits in Texas Yes Yes Yes Yes
Fed/State effect Yes Yes Yes Yes
Project type and zone effects Yes Yes Yes Yes
Observations 2,290 2,290 2,290 2,290
R2 0.044 0.776 0.838
Log pseudolikelihood -4,771
Robust standard errors are in parentheses.

Table 5: Logit results for exit

Variable Exit the market
Entrants All firms

(1) (2) (3) (4)
Experience (log of past win counts) -0.441 -0.430 -0.461 -0.495

(0.062) (0.057) (0.059) (0.054)
Prequalified firm -0.357 -0.343 -0.387 -0.451

(0.117) (0.033) (0.105) (0.027)
Firm’s market share -0.175 -0.066

(0.051) (0.030)
All other market controls Yes Yes
Observations 56,314 56,314 101,886 101,886
χ2 309.0 414.2 731.2 849.4
Entrants are firms that entered after January 2000. The dependent variable
takes the value of one for the last period (exit time) when the firm was in the
market and zero otherwise. All other market controls include the total value
of backlog of all plan holders, total number of prequalified firms, total number
of competitors, and the total value of a new building permits in Texas.
All market controls are in logs. Robust standard errors are in parentheses.
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3 A dynamic oligopoly model of the TxDOT market

Motivated by the patterns documented above, we consider an infinite-horizon continuous

time dynamic game in the spirit of Arcidiacono et al. (2016). Players are prime contracting

firms in the bidding market for TxDOT highway construction contracts. In what follows, we

refer to the TxDOT highway procurement market as “the market,” and set of firms active

in this market as “the industry.” Time is continuous and indexed by t. All players discount

the future at common (known) exponential rate ρ.

3.1 Model setup

Let J denote the set of active firms in the industry in a particular moment in time with

J = |J | the number of active firms. Each firm i ∈ J is characterized by a four-dimensional

firm state vector si ≡ (wi, zi, κi, qi), where wi ∈ W is i’s experience, zi ∈ Z is i’s backlog,

κi ∈ K is i’s capacity, qi ∈ {0, 1} is i’s qualification status, with W , Z, and K discrete

sets of cardinality W , Z, and K respectively. Let S = W × Z × K × {0, 1} be the set of

possible values for the firm-specific state si, S = |S| = 2WZK be the cardinality of S, and

ι = 1, ..., S be any scalar-valued index of the elements of S. Firms play type-symmetric

strategies, so that outcomes depend only on the numbers, not identities, of firms at each

state. Following Ericson and Pakes (1995), we therefore define the industry state sJ as an S-

element vector counting the number of active firms at each point in the firm-level state space

S: sJ = (sJι )
S
ι=1, where sJι = |{j ∈ J : sj = Sι}|. Finally, since our data include the 2008

recession, we also allow for an aggregate state a ∈ {1, ..., A} = A representing other external

factors relevant for the market (in our application, outside construction opportunities).

Active firms compete via low-price sealed-bid auctions to win a sequence of heterogenous

highway construction projects ℓ ∈ {1, 2, ...} generated over time by TxDOT. Each project

ℓ is described by a vector of observable characteristics xℓ ∈ X drawn from distribution Fx.

Each active firm incurs a flow cost cf (si, a) while it remains in the market. Firms enter and
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exit the industry, participate and win auctions, gain experience becoming more productive,

increase and decrease in size, and complete projects as described in detail below.

Due to the large size of the TxDOT market (with 600-800 firms active per year), the set

of possible industry states sJ in our application is huge (larger than can be represented using

standard floating-point numbers). Building on the MME solution of Ifrach and Weintraub

(2017), we will thus ultimately model firms as tracking their own states si, the aggregate

state a, and the exact states of competitors for each auction in which they participate, but

only a low-dimensional vector of summary statistics ŝ(sJ ) of the industry state sJ . We refer

to ŝ(sJ ) as industry moments. We collect all tracked market-level variables—the industry

moments ŝ(sJ ) and the aggregate state a—into a single vector s̄ = (ŝ(sJ ), a) which we label

the market moments. We define a MME for our model formally in Section 3.2 below.

Projects, auctions, and matching Active firms compete in low-price sealed-bid auctions

for TxDOT construction projects, bidding opportunities for which arise according to an

exogenous Poisson process. Specifically, new projects are generated by TxDOT with Poisson

rate λ0. Upon arrival of a project ℓ, its characteristics xℓ are drawn from Fx. Each active

firm i ∈ J is then instantaneously matched to project ℓ according to a (common knowledge)

match probability function m(xℓ, si, s̄) which depends on characteristics of the project xℓ,

the firm’s state si, and the market moments s̄.8 If matched to project ℓ, firm i becomes a

bidder for project ℓ. We include the market moments s̄ in m(xℓ, si, s̄) to allow for potential

nonlinear or non-monotone relationships between the number of active firms and auction-

level outcomes, as can be induced for example by endogenous auction-level entry as in Li

and Zheng (2009).9

8In particular, if qi = 0 but the auction requires a pre-qualification status, i.e. xℓ,q = 1, then firm i is not
eligible to become a bidder for project ℓ and thus m(si, xℓ, s̄) = 0.

9In preliminary versions of this paper, we modeled matching between active firms and projects at the
planholder level, with matched planholders observing the set of rival planholders and making endogenous
auction-level entry decisions based on private entry costs as in Li and Zheng (2009) and Groeger (2014).
Our dynamic framework extends straightforwardly to incorporate this auction-level entry stage, and indeed
we estimated several early versions including an additional auction-level entry choice. Ultimately, however,
we felt that this additional entry layer distracted from what we see as our main contribution, development
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Bidding Let J b
ℓ ⊂ Jℓ denote the subset of firms j ∈ Jℓ matched to auction ℓ. Upon

being matched to auction ℓ, each bidder i ∈ Jℓ observes auction characteristics xℓ and the

states of all rivals j ∈ Jℓ and draws their private completion cost ciℓ from a distribution

Fc(·|si, xℓ, a), with costs drawn independently across bidders conditional on observables and

cost distributions common knowledge to bidders. Note that, when firms play type-symmetric

strategies, only rival types, not rival identities, are relevant for forecasting bidding behavior.

Paralleling our definition of the industry state sJ , we therefore define the competition state

sbℓ for auction ℓ as a S × 1 vector whose elements count the number of bidders j ∈ J b
ℓ at

each element of the firm-level state space S.

Based on their private cost realization ciℓ, project characteristics xℓ, the competition

state sbℓ, and tracked market moments s̄, each bidder i ∈ J b
ℓ submits a bid biℓ. TxDOT

sets a secret reserve price Rℓ, drawn from distribution G0(·|xℓ). The bidder submitting the

minimum bid wins, subject to this bid being below the secret reserve price.

If bidder i wins auction ℓ, they receive their bid biℓ, incur their completion cost ciℓ, and

augment their backlog by the size of project ℓ: z′i = zi+zℓ. In addition, their experience level

ωi increments by one, up to the maximum experience level W : ω′
i = min{ωi +1,W}. States

for non-winners are unchanged. Matching, bidding and winning occur instantaneously.

Project completion, capacity, and qualification transitions In addition to endoge-

nous transitions through winning auctions, firms’ states also transition through the following

processes. First, firm i with state si and positive backlog (zi > 0) transitions to each lower

backlog level z′i < zi according to a Poisson jump process with rate δz(z
′
i, si), where δz(z

′
i, si)

represents expected backlog transitions through project completion.10

of a framework suitable for analysis of the dynamic evolution of large-scale procurement auction markets.
For purposes of this paper, therefore, we elected to focus on a simpler model with matching directly to the
bidding stage. We believe, however, that extension of our framework to include an auction-level entry stage
represents a natural and interesting avenue for future research.

10This is, of course, a stylization of the actual completion process. We could in principle model the actual
completion rates for each of the firm’s current projects, but this would require tracking many more state
variables per firm: set of projects won, size remaining and scheduled completion date on each project. The
simple Poisson process here parsimoniously approximates the actual completion process without increasing
the state space unduly. We use actual completion data to estimate this process as described later.
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Second, firm i with current state si transitions between capacity levels according to a

Poisson jump process, transitioning to each new capacity level κ′
i ∈ K, κ′

i ̸= κi with rate

δκ(κ
′
i, si). Conceptually, it is straightforward to extend our framework to model capacity

as a dynamic decision. Empirically, however, we observe only an approximation to firm

capacity, for which we believe our simple Poisson process is more appropriate. Note also

that the transition rate δκ(κ
′
i, si) depends on all aspects of the firm’s current state. Our

formulation therefore allows auction outcomes to endogenously affect capacity evolution on

the equilibrium path. The main limitation is that we implicitly hold capacity transition rates

conditional on state fixed in counterfactuals, whereas with fully dynamic policies these rates

would counterfactually evolve.

Finally, recalling that eligibility for prequalification is determined primarily by a firm’s

accumulation of the requisite experience and capacity, we model firm i’s transition from

non-qualified status, qi = 0, to qualified status, qi = 1, as an exogenous Poisson rate δq(si)

which depends on firm i’s current state. As above, we emphasize that this framing allows

qualification to depend endogenously on auction outcomes, insofar as these affect the firm’s

experience, backlog, and capacity. The main caveat is that qualification rates conditional on

state are held fixed in counterfactuals, although we see this as less of a limitation than for

capacity since the state si directly controls for the main factors determining qualification.

Industry exit Each active firm i ∈ J with backlog zi = 0 receives opportunities to exit

the industry at Poisson rate λχ. Upon receiving an exit opportunity, a firm may choose either

to exit (χ = 1) or not (χ = 0). If the firm chooses to exit, it receives instantaneous payoff

Ψχ(si) + σχ(κi)ϵχ,i and takes no further actions, where Ψχ(si) is the average scrap value for

a firm with state si, ϵχ,i is drawn i.i.d. from a mean-zero logistic distribution, and σχ(κi) is a

scale parameter which potentially depends on firm capacity (allowing, for example, smaller

firms to experience smaller shocks). Otherwise, the firm continues in its current state.
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Industry entry New potential entrants arrive in the market at Poisson rate λe. If a new

potential entrant chooses to enter, it incurs instantaneous payoff −Ψe(a) + ϵe,i, where Ψe(a)

is an average entry cost and ϵe,i is an idiosyncratic component drawn i.i.d. from a mean-zero

logistic distribution with scale parameter σe. Firm i then becomes a member of the set of

active firms with initial states ωi = 0, zi = 0, κi = 1, and qi ∈ {0, 1} drawn from distribution

F e
q . Otherwise, potential entrant i receives a net value of zero and takes no further action.

In addition to new potential entrants described above, established prime contractors

may sometimes cross over to the TxDOT market from other states. Since these established

external firms are not the focus of our model, we model these established prime contractors

as entering exogenously at Poisson rate λe
e(s̄) which depends on the market moments s̄.

Since we do not have detailed data on prior activities of all non-Texas firms, we model

established external firms as arriving with qualification qi = 1 and experience ωi = ω̄, where

ω̄ is calibrated at average experience of qualified firms in Texas.11

3.2 Moment-based Markovian Equilibrium (MME)

In markets with few firms, it is typical to analyze dynamic oligopoly behavior using the

Markov Perfect Equilibrium (MPE) solution concept (Maskin and Tirole (1988a,b), Ericson

and Pakes (1995)), in which each active firm is modeled as conditioning strategies and beliefs

on the full industry state. Unfortunately, in industries with more than a handful of firms,

MPE quickly becomes unwieldy, as the cardinality of the industry state grows exponentially

in the number of firms. This curse of dimensionality renders MPE both infeasible and (in our

view) behaviorally implausible in markets such as TxDOT with hundreds of active firms.12

Motivated by this problem, recent work on large oligopolies has instead relied on several al-

ternative, closely related, solution concepts tailored to large-scale dynamic games: Oblivious

11Since we interpret backlog and capacity as specific to the TxDOT market, we model backlog and capacity
for established outside firms in the same way as new entrants.

12For example, in our TxDOT application, there are typically more than 600 active firms, each of which
can be in one of more than 500 distinct states, implying a set of industry states with cardinality larger than
the maximum value, approximately 2×10308, which can be represented in standard floating-point arithmetic.
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Equilibrium (OE, Weintraub, Benkard, and Roy (2008)), Extended Oblivious Equilibrium,

(EOE, Weintraub, Benkard, and Roy (2010)) , Stationary Equilibrium (SE, Adlakha, Jo-

hari, and Weintraub (2015)), and Moment-based Markovian Equilibrium (MME, Ifrach and

Weintraub (2017)). In brief, these solution concepts obtain tractability by modeling firms as

tracking their own states plus realizations of at most a few other relevant states (e.g. aggre-

gate shocks), with all other aspects of the industry state summarized via low-dimensional

moments (MME), long-run averages (OE, EOE), or long-run distributions (SE). They can

be viewed either as approximations to MPE or as models of firm behavior in their own right.

Depending on the application in question, our model can be closed under any of these four

solution concepts, with only minor modifications to our subsequent analysis. In practice,

the key tradeoff is whether one wishes to prioritize allowing for aggregate shocks (MME,

EOE), or conditions under which convergence to MPE can be guaranteed (OE, SE); since

industry states will depend on the full history of aggregate shocks, models which allow for the

former typically cannot guarantee the latter. Since our data include the 2008 recession, we

here close the model building on the MME solution concept of Ifrach and Weintraub (2017),

which allows straightforwardly for aggregate shocks.13 Intuitively, our MME solution models

firms as forecasting payoffs from future auctions based on their own states si, the aggregate

state a, and the low-dimensional vector of industry moments ŝ(sJ ) introduced above, but

not the full industry state sJ . Under conditions outlined below, this allows us to replace

the high-dimensional industry state sJ with the low-dimensional industry moments ŝ(sJ ) in

each firm’s dynamic programming problem. Crucially, however, this simplification applies

only to forecasts of competition in future auctions: once matched to a specific auction,

bidders further observe and condition their bidding strategies on the exact states of auction

rivals. Our MME solution thereby embeds strategically rich auction-level “spot market”

competition within an overarching model of dynamic oligopoly which remains tractable even

13Ifrach and Weintraub (2017) motivate MME as a tool to analyze markets with dominant firms. From
the perspective of other players, however, the state of the dominant firm is isomorphic to an aggregate shock,
implying that Ifrach and Weintraub (2017)’s definitions simplify straightforwardly to markets with aggregate
shocks instead of dominant firms.
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in markets with hundreds of firms.

To formalize this MME solution concept, we first discuss how firms’ beliefs are formed

over the states s̄ and sbℓ and formally state them in Assumptions 1 and 2. Let g̃b denote firm

i’s belief about the competition state sbℓ for auction ℓ with characteristics xℓ, formed upon

being matched with project ℓ but before observing rivals or their states. Let HJ denote any

history of the industry up to the present. We model g̃b as depending on exact values of xℓ,

the firm’s own state si, and the aggregate state a, but as depending on the industry state sJ

and other aspects of the history HJ only through the industry moments ŝ(sJ ). Conditional

on xℓ, si, and s̄ = (ŝ(sJ ), a), however, firms have correct beliefs on average:

Assumption 1. For any auction characteristics xℓ and any histories HJ
1 ,HJ

2 such that

si,1 = si,2 = si and s̄1 = (ŝ(sJ1 ), a1) = s̄2 = (ŝ(sJ2 ), a2) = s̄,

g̃b(sbℓ|xℓ,HJ
1 ) = g̃b(sbℓ|xℓ,HJ

2 ) ≡ g̃b(sbℓ|xℓ, si, s̄) ∀ sbℓ.

Moreover, g̃b(sbℓ|xℓ, si, s̄) is equal to the long-run distribution of sbℓ conditional on (a, xℓ, si, s̄).

We next turn to firm beliefs over s̄ = (ŝ(sJ ), a). In practice, we discretize s̄ into M

possible values: s̄ ∈ {s̄1, ..., s̄M}. We further assume that each firm i perceives s̄ to evolve

according to a perceived transition kernel which is a Markov jump process with transition

rates consistent with long-run observed transitions:

Assumption 2. Each firm perceives s̄ = (ŝ(sJ ), a) to follow a Markov jump process in

which, for each distinct m,n ∈ {1, ...,M}, the perceived transition rate from s̄ = s̄m to

s̄ = s̄n is a constant, denoted γmn, equal to the long-run average transition rate from s̄m to

s̄n implied by the true stationary distribution of (sJ , a).

Finally, consistent with this structure on beliefs, we model firms as playing moment-based

strategies. For an incumbent, a strategy must specify rules for bidding and industry exit,

while for a potential entrant, a strategy must specify a rule for industry entry. For incum-

bents, a moment-based bidding rule is a function β(ciℓ|xℓ, si, s
b
ℓ, s̄) such that, conditional
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on being matched to auction ℓ with characteristics xℓ, drawing private completion cost ciℓ,

and facing rival bidders described by the bidding state sbℓ and aggregate conditions summa-

rized by the market moments s̄, firm i with state si submits bid biℓ = β(ciℓ|xℓ, si, s
b
ℓ, s̄). A

moment-based exit rule can be described by a real-valued function χ̄(si, s̄) such that, upon

receiving an exit opportunity, firm i with state si facing market moments s̄ exits whenever

ϵχ,i ≥ χ̄(si, s̄). Finally, recalling that potential entrants are ex ante identical, a moment-based

entry rule can be described by a real-valued function η̄(s̄) such that, upon receiving an entry

opportunity facing market moments s̄, firm i enters whenever ϵe,i ≥ η̄(s̄).14

Following Ifrach and Weintraub (2017), we define a MME as an equilibrium in moment-

based strategies when firms have moment-based beliefs satisfying Assumptions 1-2. We

further assume that firm behavior in the TxDOT market is well-described by such an MME:

Definition 1. A MME of our model is a tuple of moment-based bidding, industry exit, and

industry entry rules (β, χ̄, η̄), together with beliefs over sbℓ, rival bids, and s̄, such that:

1. Taking firm beliefs and rival strategies as given, incumbent strategies (β, ē, χ̄) maximize

incumbents’ perceived continuation values within the class of moment-based strategies;

2. Taking firm beliefs and rival strategies as given, entrant strategies η̄ maximize potential

entrants’ continuation values within the class of moment-based entry strategies;

3. Beliefs over sbℓ satisfy Assumption 1;

4. Beliefs over rival bids given (xℓ, si, s
b
ℓ, s̄) are consistent with β(·|xℓ, si, s

b
ℓ, s̄);

5. Beliefs over s̄ are described by a perceived transition kernel satisfying Assumption 2.

Assumption 3. Firm behavior is consistent with an MME of our model.

Note that Assumptions 1-3 restrict how the realized aggregate state sJ enters beliefs and

strategies, but not how a firm conditions on other payoff-relevant information. In particular,

14Our model focuses on entry decisions by small, not-yet-established firms. In practice, we also observe
some large, established firms entering from outside states. We model these established firms as arriving at
an exogenous Poisson rate λe

e(s̄) which is determined outside of equilibrium.
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once a firm has been matched with a specific project ℓ, it will condition its bidding decisions

on the exact states of rivals faced in the auction. Consequently, when rivals play MME

strategies, the exact industry state sJ is relevant for firm i’s payoffs only insofar as it

influences the distribution of rivals faced in future auctions; the firm is already conditioning

on all states relevant for auction ℓ. The core restriction embodied by Assumptions 1-3 is thus

that forecasts of future payoffs based on the full industry state sJ are well-approximated by

forecasts based only on the tracked moments ŝ(sJ ). For large procurement markets such

as TxDOT, we view this as a very plausible model of behavior, preserving the richness of

strategic interation within individual auction “spot markets” while nevertheless rendering

the full dynamic oligopoly model tractable.

3.3 Continuation values in Moment-based Markovian Equilibrium

Suppose that firms in the industry play an MME as defined above. Consider an active

firm i with state si which, at some instant, is not matched with an auction. For this firm,

states of rival firms are relevant for future profit only through expected competition in future

auctions, which firm i forecasts conditional only on the aggregate moments s̄. Furthermore,

firm i perceives s̄ to evolve according to a Markov jump process. We can therefore describe

firm i’s perceived continuation value with a value function V (si, s̄) which depends on the

high-dimensional industry state sJ only through the tracked moments s̄.

To characterize V (si, s̄), first observe that in any short interval of time h, a presently

unmatched active firm i may experience any of the following events:

Auction arrival: With Poisson rate λ0, a new project ℓ may arrive, in which case project

characteristics Xℓ will be drawn from Fx and firm i becomes a matched bidder with

probability m(Xℓ, si, s̄);

Exit opportunity: With Poisson rate λχ, firm i with zi = 0 may receive an exit opportu-

nity;
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Qualification: With Poisson rate λq(si), firm i with qi = 0 may transition to qi = 1;

Capacity: With Poisson rate δκ(κ
′
i, si), firm i’s capacity may transition from κi to κ′

i;

Completion: With Poisson rate δz(z
′
i, si), firm i’s backlog may transition from zi to z′i < zi;

Aggregate moment change: With Poisson rate γmn, s̄ may transition from s̄m to s̄n.

While qualification, capacity, completion, and aggregate moment changes lead to simple

state transitions, auction arrival and exit opportunity events lead to equilibrium choices

which depend on ex ante unknown private information. For future reference, let Π0(si, s̄) be

the ex ante expected change in i’s continuation value upon arrival of a new project (before

observing project characteristics, matched bidders, or private completion costs); we derive

Π0(si, s̄) in detail in Section 3.4 below. Similarly, let Πχ(si, s̄) be the ex ante expected change

in firm i’s continuation value upon receiving an exit opportunity (before observing private

exit payoffs), which we derive in detail in Section 3.5. We can then characterize V (si, s̄) as

the unique solution to the following Bellman equation: for all si ∈ S and s̄m ∈ {s̄1, ..., s̄M},

ρV (si; s̄m) = −cf (si, a) + λ0Π
0(si; s̄m) + λχI[zi = 0]Πχ(si, s̄)

+ λq(si)
(
V (s′i = (ωi, zi, κi, 1); s̄)− V (si, s̄m)

)
+
∑
z′i<zi

δz(z
′
i, si)

(
V (s′i = (ωi, z

′
i, κi, qi); s̄m)− V (si, s̄m)

)
+
∑
κ′
i

δκ(κ
′
i, si)

(
V (s′i = (ωi, zi, κ

′
i, qi); s̄m)− V (si, s̄m)

)

+
M∑
n=1

γmn

(
V (si; s̄n)− V (si, s̄m)

)
. (1)

The left-hand side of (1) represents the flow value a bidder receives from being in state

(si, s̄m). By definition, this flow value must equal to the sum of expected flow surplus from

each possible event above, which the right-hand side computes. Specifically, λ0Π0(si; s̄m)

represents i’s net surplus from arrival of new projects, λχI[zi = 0]Πχ(si, s̄) represents i’s
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net surplus from arrival of exit opportunities conditional on being exit-eligible, and the

final four lines represent changes in continuation value induced by state transitions through

qualification, project completion, capacity changes, and aggregate moments respectively.

We next derive a computationally tractable Conditional Choice Probability (CCP) repre-

sentation of V (si, s̄). Toward this end, we first show that Π0(si, s̄) can be recovered directly

from equilibrium bidding and matching outcomes. We then derive a CCP representation of

Πχ(si, s̄) which is identified up to an expression which is linear in unknown model param-

eters. Combining these expressions, we obtain a simple linear-in-parameters representation

of V (si, s̄), which renders estimation of our model simple even in large markets.

3.4 Identification of auction arrival profit Π0(si, s̄)

Bidding equilibrium and ex ante bidder profit First consider firm i’s bidding decision

upon being matched with auction ℓ, after observing project characteristics xℓ, the bidding

state sbℓ, and their own completion cost ciℓ. If firm i wins the auction with bid bi, it receives

spot profit bi − ciℓ and continuation value V (si + ∆si, s̄), where ∆si is the (deterministic)

change in si induced by winning project ℓ. Meanwhile, if firm i loses auction ℓ, it receives

continuation value V (si, s̄).
15 Based on the public state (xℓ, si, s

b
ℓ, s̄), as well as its private

completion cost ciℓ, bidder i thus chooses its bid bi to maximize

max
bi

{(
bi − ciℓ + V (si +∆si, s̄)− V (si, s̄)

)
× Pi(bi|xℓ, si, s

b
ℓ, s̄) + V (si, s̄)

}
, (2)

where Pi(bi|xℓ, si, s
b
ℓ, s̄) is the equilibrium probability that firm i wins with bid bi conditional

on the public state (xℓ, si, s
b
ℓ, s̄). In any MME, we can express Pi(bi|xℓ, si, s

b
ℓ, s̄) as

Pi(bi|xℓ, si, s
b
ℓ, s̄) = [1−G0(bi|xℓ)]

∏
j∈J b

ℓ ,j ̸=i

[1−Gj(bi|xℓ, si, s
b
ℓ, s̄)],

15In expressing firm i’s continuation payoffs, we implicitly make use of the fact that, from i’s perspective,
the aggregate moments s̄ follow an exogenous process which is not affected by the outcome of auction ℓ.
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where Gj(·|xℓ, si, s
b
ℓ, s̄) is the c.d.f. of equilibrium bids submitted by bidder j ∈ J b

ℓ given

state (xℓ, si, s
b
ℓ, s̄), and as above G0(bi|xℓ) is the c.d.f. of TxDOT’s secret reserve price.16

If bid biℓ is an optimal bid for bidder i, then it follows from (2) that biℓ must (almost

surely) satisfy the necessary Guerre et al. (2000)-type first-order condition

(
biℓ − ciℓ + V (si +∆si, s̄)− V (si, s̄)

)
=

Pi(biℓ|xℓ, si, s
b
ℓ, s̄)

−pi(biℓ|xℓ, si, sbℓ, s̄)
, (3)

where pi(bi|xℓ, si, s
b
ℓ, s̄) =

∂Pi(bi|xℓ,si,s
b
ℓ,s̄)

∂bi
is the derivative of i’s winning probability with re-

spect to i’s bid. The left-hand side is the change in i’s continuation value induced by winning

auction ℓ at the observed bid biℓ. The right-hand side is the (negative) inverse hazard rate

of the minimum bid among i’s rivals, evaluated at i’s bid biℓ conditional on sbℓ. This term is

identified directly from equilibrium bidding data.

Let Πb
i(xℓ, si, s

b
ℓ, s̄) denote the expected change in i’s continuation value induced by bid-

ding in auction ℓ, taken conditional on (xℓ, si, s
b
ℓ, s̄) with respect to i’s ex ante unknown

completion cost cil. In view of (3), we may express Πb(xℓ, si, s
b
ℓ, s̄) as

Πb
i(xℓ, si, s

b
ℓ, s̄) =

∫ [
Pi(B|xℓ, si, s

b
ℓ, s̄)

−pi(B|xℓ, si, sbℓ, s̄)

]
Pi(B|xℓ, si, s

b
ℓ, s̄) gi(B|xℓ, si, s

b
ℓ, s̄) dB; (4)

i.e., the expected change in i’s continuation value assuming optimal bidding times the prob-

ability of winning at each optimal bid, taken with respect to i’s equilibrium bid density

gi(·|xℓ, si, s
b
ℓ, s̄). Since all objects on the RHS are identified, Πb

i(xℓ, si, s
b
ℓ, s̄) is identified.

Expected match surplus Let Πm(xℓ, si, s̄) denote firm i’s perceived expected surplus

upon becoming a matched bidder for a project with characteristics xℓ, evaluated after ob-

serving xℓ but before observing the set of rival bidders also matched with project ℓ. In any

16We assume that the secret reserve price distribution only depends on auction characteristics.
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MME, we can express Πm(xℓ, si, s̄) as

Πm(xℓ, si, s̄) =
∑
Sb
−i

Πb
i(xℓ, S

e
ℓ , s̄) g̃

b(Se
ℓ |xℓ, si, s̄), (5)

where, as in Assumption 1, g̃b(s
b
ℓ|xℓ, si, s̄) is the long-run average distribution of bidder states

observed when a firm with state si is matched to a project with characteristics xℓ given the

aggregate state moments s̄. We can therefore directly identify Πm(xℓ, si, s̄) as the average of

Πb(seℓ) across observed matches with characteristics (xℓ, si, s̄).

Ex ante surplus from new project arrival Finally, we return to Π0(si, s̄), bidder i’s

surplus upon arrival of a new project, before observing either project characteristics xℓ or

matching outcomes. Conditional on arrival of a project with characteristics xℓ, bidder i

becomes a matched bidder with probability m(xℓ, si, s̄). If firm i is matched, they then

receive expected surplus Πm(xℓ, si, s̄) characterized above. Π0(si, s̄) is therefore given by

Π0(si, s̄) = EXℓ

[
Πm(Xℓ, si, s̄)m(Xℓ, si, s̄)

]
. (6)

We can directly identify Πm(xℓ, si, s̄) as above and m(xℓ, si, s̄) from observed matching rates,

implying that Π0(si, s̄) is also directly identified.

3.5 Ex ante exit opportunity surplus Πχ(si, s̄)

If active firm i has backlog zi = 0, then it is eligible to exit the industry and receives exit

opportunities with Poisson rate λχ. When an exit opportunity arrives, firm i can either

choose to exit and receive scrap value Ψχ(si) + σχ(κi)ϵχ,i, or not and receive continuation

value V (si, s̄m). For d ∈ {0, 1}, let Pχ,d(si; s̄m) denote the CCP that an exit-eligible firm i

optimally makes exit decision d conditional upon receiving an exit opportunity. The expected
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net surplus firm i receives from an optimal exit choice in this event can be written as

Πχ(si, s̄) = Emax
{
V (si, s̄),Ψχ(si) + σχ(κi)ϵχ,i

}
− V (si; s̄)

= −σχ(κi) logPχ,0(si, s̄), (7)

Again, the CCPs on the right-hand side of (7) are directly identified, implying a straightfor-

ward expression of Πχ(si, s̄) which is identified up to σx.

3.6 CCP representation of V (si, s̄m)

Finally, we return to our main interest: the value function V (si; s̄m) describing the expected

continuation value of active firm i with current state si, facing an industry state described by

tracked moments s̄ = s̄m. Let N = 2WZKM be the total number of states (si, s̄m), and let

V be the N × 1 vector whose elements stack i’s continuation values V (si, s̄m) in each state

(si, s̄m). We can then express V compactly in matrix form as follows. Let cf , Π
0, and Pχ,0

be N × 1 vectors which stack, respectively, the state-specific terms cf (si, a), Π
0(si, s̄m), and

Pχ,0(si, s̄m) across states (si, s̄m), and let Iχ and Σχ be N×N diagonal matrices with diagonal

elements I[zi = 0] and σχ(κi) respectively, all ordered in the same way as V. Collecting all

terms involving V on the left-hand side of (1), we can then express (1) in matrix form as

TV = −cf + λ0Π
0 + λχIχPχ,0Σχ, (8)

where the N × N matrix T collects known and / or directly estimated transition rates

multiplying each element of V in the resulting system of equations. Furthermoare, as usual

in Bellman equations, the matrix T will be diagonally dominant and thus invertible. We

can therefore solve (8) to obtain our final CCP representation for V:

V = −T−1cf + λ0T
−1Π0 + λχT

−1IχPχ,0Σχ. (9)
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We can therefore express continuation values V compactly in a form that is linear in the

parameters cf and σχ(κi). Linear-in-parameters expressions for V are not unusual; see for

example Hotz and Miller (1993), Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-

Dengler (2008), and Arcidiacono et al. (2016) among others. Given the strategic richness

embedded in our auction spot market, however, the ability to encapsulate dynamic effects of

future auctions in the single directly identified term Π0 is both striking and elegant. This in

turn renders estimation within our framework surprisingly tractable, as we describe next.

4 Estimation Methods and Results

In taking our model to data, we interpret firms as playing an MME with three tracked

industry moments ŝ(sJ ): the log number of active firms, the log number of prequalified

firms, and the log value of total backlog among active firms. We take the aggregate state a

to be the log value of new housing construction in Texas, which proxies for changes in the

outside option over our sample period (in particular due to the 2008 financial crisis). The

market moment vector s̄ = (ŝ(sJ ), a) thus includes four components overall. We take the

base unit of time as a day, and assume that firms discount the future at an annualized rate

of 0.95 (which, given our daily base unit, implies ρ ≈ 0.00014). We then estimate our model

in several steps, paralleling the steps involved in constructing the value function above.

In implementing our dynamic methods, which assume a finite state space, we discretize

state variables as follows. We discretize firm states si on a grid with Z = 11 backlog levels,

W = 6 experience levels, K = 5 capacity levels, and two qualification levels, for a total

of S = 660 distinct firm states. We similarly discretize the four elements of s̄ on a grid

with three values (low, medium, and high) in each dimension, for a total of M = 81 distinct

aggregate states.17 For each state variable, we first identify cut-points based on evenly spaced

17In practice, we observe aggregate states only monthly. We thus assign dates of aggregate state changes to
the start of each month. In principle, we could simulate time paths of aggregate state changes within months
and estimate all steps below using simulated MLE. Since aggregate states evolve very slowly, however, we
expect the loss associated with start-of-month date assignment to be negligible.
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percentiles of the distribution of the variable in question in the relevant data (bidding data

for firm states, time series data for aggregate variables). We then bin observations based on

these cut-points, where to each binned observation we assign a value equal to the mean of

the variable in question conditional on being within the bin.

4.1 Bid Distribution and Bidding Profit

We first estimate the equilibrium bidding distribution Gi(·|·). In practice, following Jofre-

Bonet and Pesendorfer (2003) and Athey et al. (2011), we specify a parametric first-step

approximation of Gi(·|·). In particular, we specify Gi(·|sbℓ) as a Weibull distribution:

Gi(·|xℓ, si, s
b
ℓ, s̄) = 1− exp

(
− 1

λℓ

(
biℓ
eceℓ

− lbℓ

))kℓ

(10)

where eceℓ is the engineer’s estimate for auction ℓ and lbℓ is the infimum support of scale-

normalized bids in auction ℓ.18 We parameterize the infimum support lbℓ, the scale parameter

λℓ, and the shape parameter kℓ as linear functions of the covariates in sbℓ. We estimate the

parameters in the equation above using MLE, subject to the constraint that bi
eceℓ

− lbℓ ≥ 0.

With estimates Ĝi(·) ofGi(·) for each bidder in hand, we plug in to equation 4 to construct

an estimate Π̂b
i(·) for Πb

i(·), the ex ante expected change in i’s continuation value induced

by bidding in an auction. Figure 5 reports the distribution, across auctions and bidders, of

Πb
i normalized by to the engineer’s estimate eceℓ. On average, we find that the expected

change in continuation value associated with bidding in an auction is equal to 4.08% of the

engineer’s estimate, a magnitude we view as empirically quite plausible.

4.2 Expected match surplus

By definition, match surplus Πm(xℓ, si, s̄) is the expectation of bid-stage surplus Πb(·) across

observed matches with characteristics (xℓ, si, s̄). Thus, to estimate Πm(xℓ, si, s̄), we simply

18Following Jofre-Bonet and Pesendorfer (2003), we assume that the infimum support of bids in each
auction the same for all bidders.
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Figure 5: Distribution of Πb
i(s

b
ℓ) relative to engineer estimates
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run a linear regression of Π̂b
iℓ on (xℓ, si, s̄) and compute its predicted value Π̂m

iℓ . We include in

this regression all auction characteristics, bidder states, and market states, as well as pairwise

interactions between log experience, log backlog, and firm capacity. Results are reported in

Table 6. Experience increases surplus, particularly for larger projects and larger firms, while

distance decrease surplus. Backlog effects are non-monotone, with median-backlog firms

having lower surplus than those with zero or very high backlogs. Large firms have lower

baseline surplus but relative advantages for large projects and with high backlog. Note that

these results pertain to bid-stage surplus inclusive of changes in continuation value induced

by winning, not to structural completion costs. In Section 4.10, we recover estimates of

completion costs after differencing out continuation values.

4.3 Match probability function

We parameterize the match probability function, m(xℓ, si, s̄), as a logit function whose index

is a linear-in-parameters function of (xℓ, si, s̄). We estimate the parameters of this logit

function via MLE, where observations are all valid potential matches between firms and

projects (subject to the restriction that non-qualified firms cannot be matched with non-

waived auctions) and the outcome is an indicator for whether each valid potential match was

33



Table 6: Match profit regression: Π̂b
iℓ on (xℓ, si, s̄)

VARIABLES COEF SE

ECE (in millions) 0.0175 (0.00181)
Log Distance to Project -0.00760 (0.000596)
Log Experience 0.00720 (0.00145)
Log Experience X ECE (millions) 0.000614 (0.000618)
Log Experience X Firm Capacity 0.224 (0.286)
Firm Capacity -5.949 (2.003)
Firm Capacity X ECE (millions) 0.179 (0.121)
Firm Capacity X Log Backlog 0.128 (0.0400)
Log Backlog 0.00271 (0.00140)
I[Zero Backlog] 0.0446 (0.0186)
Prequalified Firm -0.00954 (0.00253)
Log Total Prequalified Competitors in Market -0.242 (0.0213)
Log Total Competitors in Market 0.228 (0.0195)
Log Total Value of Backlog in Market -0.000702 (0.000397)
Log Value of New Housing Construction 0.0482 (0.00181)
Constant -0.953 (0.0446)

Project Type and Zone Effects Yes
Observations 54,864
R-squared 0.659

Robust standard errors in parentheses

realized. The resulting coefficients are reported in Table 7. On average, larger firms match

more frequently and with larger projects, with experience and backlog both increasing match

rates (especially for larger firms). The latter effect is particularly interesting, and suggests

that high current activity may generate efficiencies in future auction participation.

4.4 Auction arrival rate and auction arrival surplus

We choose the auction arrival rate, λ0, to match the average auctions per day in our data.

Since auction arrival is Poisson, this simply requires setting λ̂0 =
# days in sample

#auctions in sample
.

We estimate the auction arrival surplus Π0(si, s̄), by simulation. We draw a sample of

R = 1000 auctions {xr}Rr=1 from the empirical distribution. For each combination of states

(si, s̄m) and each sampled auction xℓ, we predict expected match surplus Π̂m(xr, si, s̄) and

match probabilities m̂(xr, si, s̄) using the parameters estimated above. We then estimate

Π0(si, s̄) by the simulated average Π̂0(si, s̄) =
1
R

∑R
r=1 Π̂

m(xr, si, s̄)m̂(xr, si, s̄).
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Table 7: Match probability m(xℓ, si, s̄): logit coefficients

VARIABLES COEF SE

Log Distance to Project -0.257 (0.00336)
Log Experience X Log ECE -0.135 (0.00304)
Log Backlog X Log Experience -0.00392 (0.000827)
I[Firm Capacity = 1] 12.95 (0.406)
I[Firm Capacity = 2] 6.330 (0.415)
I[Firm Capacity = 3] 1.222 (0.423)
I[Firm Capacity = 4] -3.810 (0.438)
I[Firm Capacity = 5] -9.554 (0.455)
Log ECE X I[Firm Capacity = 1] -0.461 (0.0102)
Log ECE X I[Firm Capacity = 2] 0.0510 (0.0114)
Log ECE X I[Firm Capacity = 3] 0.424 (0.0122)
Log ECE X I[Firm Capacity = 4] 0.755 (0.0137)
Log ECE X I[Firm Capacity = 5] 1.097 (0.0147)
Log Experience X I[Firm Capacity = 1] 1.921 (0.0402)
Log Experience X I[Firm Capacity = 2] 2.056 (0.0438)
Log Experience X I[Firm Capacity = 3] 2.144 (0.0463)
Log Experience X I[Firm Capacity = 4] 2.439 (0.0481)
Log Experience X I[Firm Capacity = 5] 2.714 (0.0507)
Log Backlog X I[Firm Capacity = 1] 0.0789 (0.00220)
Log Backlog X I[Firm Capacity = 2] 0.0797 (0.00274)
Log Backlog X I[Firm Capacity = 3] 0.0665 (0.00352)
Log Backlog X I[Firm Capacity = 4] 0.0423 (0.00398)
Log Backlog X I[Firm Capacity = 5] 0.0478 (0.00482)

Project Type and Zone Effects Yes
Observations 5,842,571

Standard errors in parentheses
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4.5 State transition rates

We parameterize the state-specific Poison rates associated with Markov jump processes for

firm-level completion, qualification, and capacity events as follows:

Completion Backlog transition rates, δz(z
′
i, si), are specified as the product of a base rate λz

representing the arrival of a completion event, times a truncated Poisson pdf (truncated

between 1 and zi) representing the number of steps taken in the event a completion

event occurs. We take λz as a parameter to be estimated, and parameterize the rate

in the truncated Poisson distribution as a log-linear-in-parameters function of si.

Qualification Qualification rates, λq(si), are parameterized as a log-linear-in-parameters

function of si.

Capacity We model capacity as evolving in single steps, to either one size larger or one

size smaller. We specify the rate δκ(κ
′
i, si) associated with each of these transitions as

a log-linear-in-parameters function of si.

We then estimate the parameters of each transition rate function using CMLE based on the

relevant observed firm-level state transitions, as described in detail in Appendix B.

4.6 Transition kernel for aggregate state moments

As an empirical MME transition kernel, we assume that firms perceive each element s̄j of

s̄, j ∈ {1, ..., 4}, as evolving in single steps according to a Markov jump process. Rates of

increase (if feasible) and decrease (if feasible) in the aggregate state a, new housing construc-

tion in Texas, depend only on indicators for current value of a, reflecting our expectation that

a is primarily driven by broader macro-economic conditions. Rates of increase (if feasible)

and decrease (if feasible) for each of the industry moments ŝ(sJ ) are modeled as separate

log-linear-in-parameters functions of indicators for the current level of the moment in ques-

tion plus linear terms for other elements of s̄. We then estimate parameters in each rate

function using CMLE based on observed aggregate transitions as described in Appendix A.2.
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4.7 First-step Exit CCPs

To construct first-step CCP estimates of exit policies Pχ,d(si, s̄), we parameterize exit prob-

abilities as a logit function of (si, s̄) whose odds ratio is linear in parameters. We calibrate

the exit opportunity rate λχ such that exit-eligible firms (with backlog zit = 0) receive,

on average, one exit opportunity per month. For exit-elibile firms, we define the exit rate

qCCP
χ (si, s̄) = λχP

CCP
χ,1 (si, s̄), and estimate parameters of the policy function Pχ,1(si, s̄) via

CMLE as described in Appendix A.1. We then plug estimated first-step non-exit probability

P̂χ,1(si, s̄) into (7) to obtain our CCP representation of Π̂χ.

4.8 Structural parameter estimation

Finally, we turn to our model’s structural parameters governing flow opportunity costs

(cf (si, a)), the distribution of scrap values (Ψχ(si) and σχ), the distribution of industry

entry costs (Ψe(a) and σe), and the distribution of project completion costs (Fc(·|xℓ, si, a)).

We parameterize mean scrap values, the logit error scale σχ(si), and flow opportunity

costs as linear in parameters: Ψχ(si) = Xχ(κi, ωi, qi)θχ and σχ(si) = Xσχ(κi)θσχ , and

cf (si, a) = Xf (si, a)θf . Plugging these forms for Ψχ(si), σχ(si), and cf (si, a), plus estimates

for T̂, Π̂0, P̂χ,0, and Poisson rates constructed as above, into (9) yields a linear-in-parameters

CCP representation of V (si, s̄):

V̂(θf , θχ, θσχ) = T̂−1Xfθf + λ̂0T̂
−1Π̂0 + λχT̂

−1IχP̂χ,0Xσχθσχ . (11)

Conditional on receiving an exit opportunity, the structural probability that an incumbent

chooses to exit can be expressed as

Pχ,1(si, s̄; θf , θχ, θσχ) =
exp([Xχθχ − V̂ (si, s̄; θf , θχ, θσχ)]/[Xσχθσχ ])

1 + exp([Xχθχ − V̂ (si, s̄; θf , θχ, σχ)]/[Xσχθσχ ])
. (12)

The structural exit rate for an exit-eligible firm is thus qχ(si, s̄; θf , θχ, θσχ) = λχPχ,1(θf , θχ, θσχ).
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We specify mean entry costs as Ψe(a) = Xe(a)θe. Conditional on receiving an entry

opportunity, the structural probability that a potential entrant chooses to enter is

Pe,1(s̄; θf , θχ, θσχ , θe, σe)

=
exp([p0e,qV̂ (s0e, s̄; θf , θχ, θσχ) + p1e,qV̂ (s1e, s̄; θf , θχ, θσχ)−Xeθe]/σe)

1 + exp([p0e,qV̂ (s0e, s̄; θf , θχ, θσχ) + p1e,qV̂ (s1e, s̄; θf , θχ, θσχ)−Xχθe]/σe)
, (13)

where p0e,q and p1e,q are the (exogenous) probabilities of realizing non-qualified or qualified

states upon entry, and s0e = (0, 0, 1, 0) and s1e = (0, 0, 1, 1) are the associated post-entry

states. We calibrate the number of potential entrants N e as the average monthly number of

non-prime subcontractors over our sample, and the entry opportunity rate λe such that each

potential entrant receives, on average, one entry opportunity per quarter. The structural

rate of new firm entry is therefore NeλePe,1(s̄; θf , θχ, θσχ , θe, σe).
19

Lastly, we parameterize the distribution Fc(·|xℓ, si, a) of completion costs ciℓ based on

the following model for ECE-normalized completion costs ciℓ/eceℓ:

ciℓ
eceℓ

= µ(xℓ, si, a) + σc(xℓ)ϵc,iℓ, (14)

where µ(xℓ, si, a) = Xµ(xℓ, si, a)θµ parameterizes the mean of ciℓ/eceℓ, σc(xℓ) parameterizes

the standard deviation of ciℓ/eceℓ, and ϵc,iℓ is an i.i.d. standard normal error. We also

explored other parameterizations, such as log-normal models for ciℓ, but found that the

simple specification (14) provided a better representation of the data.20

Substituting from the bid first-order condition (3) and the CCP representation (11), we

19For simplicity, we assume that that the pool of potential entrants does not change over time (i.e., that
each entering firm is immediately replaced). Consequently, there is no loss in aggregating entry outcomes to
spells defined by constant values of s̄. We could alternatively track each potential entrant separately; this is
straightforward in principle, although it would require adding yet another layer to our model.

20While our normal specification for ϵc,iℓ does permit negative completion costs, these are not practically
important; at our baseline estimates reported below, only about 0.003 of estimated costs are negative. In
estimation, we have also explored modifying (14) to involve a normal distribution truncated at zero, finding
very similar results. Introducing this truncation would, however, substantially complicate the sparse-grid
strategy we aim to employ for counterfactuals, requiring us to double the number of grid dimensions. Given
the large costs of the curse of dimensionality, we prefer the simple parameterization (14).
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can form an empirical pseudo-likelihood from (14) based on21

ĉiℓ =
biℓ
eceℓ

+
∆iℓV̂ (si, s̄; θf , θχ, θσχ)

eceℓ
+

P̂i(biℓ|xℓ, si, s
b
ℓ, s̄)

eceℓp̂i(biℓ|xℓ, si, sbℓ, s̄)
∼ N(µ(xℓ, si, a), σc(xℓ)). (15)

In addition to identifying µ(xℓ, si, a) and σc(xℓ), (15) also helps to identify the parameters

(θf , θχ, σχ) entering the CCP representation V̂ . This additional source of identification, from

auction-level FOCs, allows us to recover parameters (such as flow opportunity costs of firm

backlog) that would not be identified using exit decisions only.

We estimate (θf , θχ, θσχ , θe, σe, θc, θσ) simultaneously using pseudo-MLE estimation (Aguir-

regabiria and Mira (2007)) based on observed industry exit decisions, observed industry entry

outcomes, and implied firm completion costs for all projects with engineers’ estimates of at

least $100,000 (95% of projects in our data). We form pseudo log-likelihoods for industry exit

decisions based on (12), industry entry outcomes based on (13), and completion costs in the

estimation sample based on (15), as described in detail in Appendix A. We then maximize

the sum of these (pseudo) log-likelihoods subject to the restriction that both scrap values and

error scales be non-negative. We report estimates for dynamic parameters (θf , θχ, σχ, θe, σe)

and completion costs (θc, θσ) in the next two subsections 4.9 and 4.10 respectively.

4.9 Dynamic parameter estimates

Table 8 present estimates of our models’ dynamic parameters (θ̂f , θ̂χ, θ̂σχ , θ̂e, σ̂e) derived from

the pseudo-MLE procedure above. Panel (a) presents scrap value parameters θχ and θσχ ,

panel (b) presents entry cost parameters θe and σe, and panel (c) presents flow opportunity

cost parameters θf . Estimated error scale parameters θ̂σχ suggest that larger firms have sub-

stantially larger idiosyncratic scrap value shocks, which is natural since these firms are much

larger overall. Estimated entry costs are somewhat larger than expected, approximately

$5.12m, and increasing in outside construction activity. The estimated idiosyncratic σ̂e are

21In practice, we evaluate ∆iℓV̂ (·) by interpolating i’s pre- and post-win backlog and experience levels
linearly on the discretized grid Z ×W, holding other states fixed at their discretized bid-stage values.
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both small relative to their respective means, suggesting that our model can rationalize our

data with relatively small idiosyncratic shocks. Since the dynamic portion of our model is

relatively parsimonious, we view this as highly encouraging.

Figure 6 illustrates the MME value function V̂ (si, s̄) implied by these dynamic estimates,

focusing on variation in V̂ (si, s̄) across firm-specific states si. Panels (a) and (b) illustrate

how continuation values vary with experience and backlog for low-capacity (κi = 1) and

high-capacity (κi = K = 5) firms respectively. Meanwhile, panels (c) and (d) illustrate

how continuation values vary with capacity and log backlog for firms with low experience

(ωi = 1) and high experience (ωi = W = 5) respectively. Experience and capacity both

increase continuation values, with strong complementarities between the two. Such comple-

mentarities suggest that policies which influence the way firms gain experience—for example,

qualification waivers—have substantial scope to influence long-run market composition.

4.10 Completion cost estimates

Figure 7 illustrates the distribution and fit of our completion cost estimates within our es-

timation sample (the 95% of projects with engineer’s estimates of at least $100,000). Panel

(a) illustrates the histogram of ĉiℓ/eceℓ across all bidders for projects with eceℓ ≥.22 The

distribution of ĉiℓ/eceℓ is slightly asymmetric, with a first decile value of 0.71, a median of

1.05, a mean of 1.08, and a ninth decile value of 1.48, all magnitudes we view as plausi-

ble. Meanwhile, Panel (b) plots the cumulative histogram of implied z-scores for these cost

estimates relative to their predicted CDF, that of a standard normal distribution. Encour-

agingly, Panel (b) suggests that the fit of our baseline specification (14) is quite good, which

we view as highly encouraging given the complexity of our model.

Next, in Table 9, we report estimates for parameters governing the mean and standard

deviation of normalized completion costs ciℓ/eceℓ. Log standard deviation coefficients, re-

ported in Panel (b), imply that project size substantially impacts the dispersion of ciℓ/eceℓ;

22For clarity, we illustrate this histogram for 0 ≤ ĉiℓ/eceℓ ≤ 4, which captures more than 99% of observa-
tions.
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Table 8: Dynamic scrap value, flow opportunity costs, and entry cost parameters

(a) Scrap value parameters (millions of dollars, positive: higher cost)

Parameter Estimate SE
θχ: I[Firm Size = 1] 2.7781 0.0221
θχ: I[Firm Size = 2] 3.6308 0.144
θχ: I[Firm Size = 3] 5.1718 0.3069
θχ: I[Firm Size = 4] 2.453 1.3768
θχ: I[Firm Size = 5] 0 –
θχ: Std Log Exp X I[Firm Size = 1] -1.388 0.2596
θχ: Std Log Exp X I[Firm Size = 2] -1.3426 0.8749
θχ: Std Log Exp X I[Firm Size = 3] -5.3717 1.6648
θχ: Std Log Exp X I[Firm Size = 4] 1.6785 8.0123
θχ: Std Log Exp X I[Firm Size = 5] -7.6913 30.6866
θχ: (Std Log Exp)2 X I[Firm Size = 1] 4.2333 0.4108
θχ: (Std Log Exp)2 X I[Firm Size = 2] 5.2382 1.1117
θχ: (Std Log Exp)2 X I[Firm Size = 3] 11.7775 1.8936
θχ: (Std Log Exp)2 X I[Firm Size = 4] 15.5031 10.0667
θχ: (Std Log Exp)2 X I[Firm Size = 5] 25.0649 33.4837
θσχ : Intercept 0.445 0.0052
θσχ : Std Firm Size 5.8288 0.081

(b) Entry cost parameters (millions of dollars, positive: higher cost)

Parameter Estimate SE
θe: Constant 5.1248 0.1011
θe: Standardized Log New Housing 0.1725 0.0364
σe: Logistic error scale 0.1445 0.0283

(c) Flow cost parameters (millions of dollars, positive: higher cost)

Parameter Estimate SE
θf : Standardized Log Backlog -1.2599 0.145
θf : Std Log Experience X Std Log Backlog 26.8796 0.1482
θf : Std Log Backlog X Std Log New Housing 0.6189 0.2272

Notes: Covariates multiplying (θf , θχ, θe) are standardized so that units are standard devi-
ations around the mean of the relevant data (firm spells for θf and θχ and aggregate entry
spells for θe). θf , θχ, and θe can thus be interpreted as changes (in millions of dollars) induced
by a one-standard-deviation change in the characteristic of interest.
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Figure 6: Estimated MME value function V̂ (si, s̄) for a qualified firm as a function of expe-
rience, backlog, and capacity, evaluating aggregate moments s̄ at their midpoint levels.

(a) Value function in experience versus log
backlog for low capacity firm (κi = 1)

(b) Value function in experience versus log back-
log for high capacity firm (κi = K = 6)

(c) Value function in capacity versus log backlog
for low experience firm (ωi = 1)

(d) Value function in capacity versus backlog for
high experience firm (ωi = W = 5)

Figure 7: Distribution and fit of ĉiℓ/eceℓ for projects with eceℓ > $100k

(a) Estimates: Histogram of ĉiℓ/eceℓ (b) Fit: Z-scores of ĉiℓ/eceℓ
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for projects with eceℓ = $100k, eceℓ = $1m, and eceℓ = $10m, implied standard deviations of

ciℓ/eceℓ are approximately 0.546, 0.357, and 0.233 respectively. Mean coefficients, reported in

Panel (a), suggest that experience substantially decreases expected completion costs, while

distance and complexity both increase completion costs. While capacity patterns are some-

what noisy, larger firms broadly have higher baseline costs but greater economies of scale

associated with high backlog. More non-highway construction increases completion costs,

which is natural since such construction likely increases both opportunity and input costs for

TxDOT work. Recalling that the dependent variable is ciℓ/eceℓ, the small coefficient on the

engineer’s estimate confirms that average costs scale nearly one-for-one in project size. As

with continuation values, the relatively strong effects of dynamic factors such as experience

and capacity on firm costs suggests that policies which influence the long-run composition

of the TxDOT industry can have large effects on long-run market outcomes.

5 Conclusion and planned counterfactuals

This paper proposes a tractable dynamic oligopoly framework within which to analyze long-

run industry composition in large procurement markets. Combining recent innovations in

analysis of dynamic oligopoly models with many firms (Ifrach and Weintraub (2017)) and in

continuous time (Arcidiacono et al. (2016)) with identification insights from the empirical

auction literature, we obtain a simple CCP estimator for MME continuation values which

renders estimation tractable even in markets with hundreds or thousands of firms. Estima-

tion using 2000-2012 TxDOT data suggests that our model provides a good representation

of the TxDOT market, yielding natural estimates of completion costs, flow costs, scrap val-

ues and entry costs accounting for forward-looking firm behavior. These estimates confirm

that dynamic factors such as experience and capacity have substantial impacts on firms’

completion costs, participation rates, and continuation values. This in turn suggests that

procurement policies which impact long-run industry composition have substantial scope to
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Table 9: Structural estimates: completion costs

(a) Completion costs: mean parameters (millions of dollars)

Parameter Estimate SE
θµ: Constant -1.9173 0.1279
θµ: Log Experience -0.0349 0.0015
θµ: I[Firm Size = 2] 2.6978 0.0773
θµ: I[Firm Size = 3] 4.155 0.0751
θµ: I[Firm Size = 4] 4.2175 0.0763
θµ: I[Firm Size = 5] 4.699 0.074
θµ: Log Engineer’s Estimate X I[Firm Size = 1] 0.0312 0.0048
θµ: Log Engineer’s Estimate X I[Firm Size = 2] -0.1329 0.004
θµ: Log Engineer’s Estimate X I[Firm Size = 3] -0.2101 0.003
θµ: Log Engineer’s Estimate X I[Firm Size = 4] -0.2114 0.0025
θµ: Log Engineer’s Estimate X I[Firm Size = 5] -0.1343 0.0018
θµ: Log Backlog X I[Firm Size = 1] 0.0044 0.0009
θµ: Log Backlog X I[Firm Size = 2] -0.0185 0.0008
θµ: Log Backlog X I[Firm Size = 3] -0.0326 0.0007
θµ: Log Backlog X I[Firm Size = 4] -0.0276 0.0006
θµ: Log Backlog X I[Firm Size = 5] -0.114 0.0006
θµ: Log Distance 0.0146 0.0011
θµ: Log Number of Tasks 0.0834 0.0021
θµ: Log New TX Housing 0.0967 0.0051
Contract Type Controls YES
Contract Zone Controls YES

(b) Completion costs: Log standard deviation parameters

Parameter Estimate SE
θσ: Constant 1.5242 0.0193
θσ: Log Engineer’s Estimate -0.1849 0.0014
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affect long-run market outcomes, a mechanism about which little is known empirically.

In work in progress, we aim to explore several counterfactuals which will allow us to

quantify such long-run impacts of procurement policy design in our TxDOT application.

In practice, the main challenge in implementing these counterfactuals is that spot market

competition is through asymmetric first-price auctions, whose solutions are numerically dif-

ficult. Leveraging the fact that mean completion costs and continuation values enter the

bidding problem isomorphically, however, we plan to apply recent developments in sparse

grid interpolation methods (e.g. Brumm and Scheidegger (2017)) to solve for auction-level

payoffs outside of the dynamic oligopoly equilibrium problem. With this accomplished, we

can solve for counterfactual MME outcomes relatively simply as in Ifrach and Weintraub

(2017). As examples, we plan to quantify the long-run effects of a static optimal reserve

price, of switching from first to second-price auctions, and of revising or eliminating qual-

ification waivers. Our model, however, also allows analysis of many other policy changes

whose long-run effects are at present largely unknown.
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Appendix A: Estimation details

A.1: Firm-specific transition rates

To estimate firm-specific transition rates, we partition our data into firm-specific spells de-
fined by changes in the state variables (si, s̄), where any change in either si or s̄ defines the
start of a new spell. For each spell t for firm i, let ∆it denote the holding time (length)
of the spell and sit and s̄it denote states prevailing during the spell. For each transition
type τ , let dτit be an indicator equal to one if spell it ended through a type-τ transition
and zero if spell it ended through some other event. For each firm state s′i ∈ Si, let
qτ (s

′|sit, s̄it, θτ ) denote the Poisson rate of transitioning from state sit to state s′ through
transition τ , where θτ are unknown parameters governing the associated rate. Finally, let
Qτ (sit, s̄it, θ

τ ) =
∑

s′∈∈Si∪⊬,s′ ̸=sit
qτ (s

′|sit, s̄it, θτ ) denote the sum of rates of moving to all pos-
sible new states s′ ̸= sit through transition τ in spell it. We can then express the probability
that spell it ends with no transition through τ (dτit = 0) after holding time ∆it as the survival
function of an exponential distribution with rate Qτ (sit, s̄it, θ

τ ):

P (∆it, d
τ
it = 0|sit, s̄it, θτ ) = exp(−Qτ (sit, s̄it, θ

τ )∆it).

Meanwhile, the probability that spell it ends with a transition through τ (dτit = 1) to distinct
state s′ ̸= sit after holding time ∆it can be expressed as

P (∆it, d
τ
it = 1, s′|sit, s̄it, θτ ) = Qτ (sit, s̄it, θτ ) exp(−Qτ (sit, s̄it, θ

τ )∆it)×
qτ (s

′|sit, s̄it, θτ )
Qτ (sit, s̄itθτ )

= exp(−Qτ (sit, s̄it, θτ )∆it)× qτ (s
′|sit, s̄it, θτ ),

where, in the first line, the first term represents the p.d.f. of a transition through τ at holding
time ∆it, and the second term represents the probability of moving to s′ conditional on a
transition through τ . Combining cases, we can express the conditional log likelihood of spell
outcome (∆it, d

τ
it, s

′) through transition τ given parameters θτ as

ℓτit(θτ ) = −Qτ (sit, s̄it, θτ )∆it + dτit ln qτ (s
′|sit, s̄it, θτ ). (16)

We estimate θτ for each firm-specific transition τ by conditional maximum likelihood esti-
mation (CMLE) based on the conditional likelihood Lτ (θτ ) =

∑
i,t ℓ(θ

τ ).

A.2: Perceived aggregate moment transition rates

We assume that firms perceive each element s̄j, j = 1, ..., 4, of the aggregate moment vector
s̄ as evolving in single steps according to a Markov jump process. Specifically, s̄j increases
by one unit (if feasible) with rate q+j (s̄, β

+
j ) = exp(Xj(s̄)β

+
j ) and decreasing by one unit (if

feasible) with rate q−j (s̄, β
−
j ) = exp(Xj(s̄)β

−
j ), where Xj(s̄) is a known function of s̄ and

β+
j and β−

j are parameters to be estimated. In practice, for our three aggregate moments
measuring industry composition, Xj(s̄) includes separate indicators for each level of s̄j plus
linear terms for the other elements of s̄. For our final aggregate moment, which measures
the log value of new housing construction in Texas, Xj(s̄) includes only indicators for the
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current level of s̄j. This reflects our expectation that new housing construction is driven
more by the broader macro-economy than by the TxDOT market specifically.

We partition our data on s̄ into T distinct spells, indexed t = 1, ...T , between changes
in s̄. Let s̄t denote the value of s̄ during spell t and ∆t be the length of spell t. For each
element s̄j of s̄, we estimate β+

j and β−
j based on a (pseudo) CMLE estimator paralleling

(16) above:

(β̂+
j , β̂

−
j ) = argmax

{
T∑
t=1

−∆t · [q+j (s̄t) + q−j (s̄t)] +
T∑
t=1

d+jt log q
+
j (s̄t) +

T∑
t=1

d−jt log q
−
j (s̄t)

}
,

where d+jt and d−jt are indicators for whether spell t ended with an increase in s̄j or a decrease
in s̄j (or neither, in which case both indicators are zero). For each distinct m,n ∈ {1, ...,M},
we then derive the implied rate at which s̄ transitions from s̄m to s̄n, which we take as an
estimate for the MME firm belief γmn over the corresponding transition.23

Appendix B: Dominant firms

This Appendix extends our baseline framework to account for the possibility of dominant
firms. Following IW (2017), suppose that a subset of firm states si ∈ Sd ⊂ S correspond
to “dominant” firm states, while the remaining states si ∈ Sf = S\Sd correspond to fringe
states. For example, in our application, “dominant” states could be those for qualified firms
with maximal capacity (qi = 1, κi = K), or with both maximal capacity and maximal
experience (qi = 1, κi = K, ωi). Let the dominant firm state sd be a |Sd| × 1 vector whose
elements count the number of firms at each element of the dominant state set Sd, and the
industry fringe state sf be a |Sf | × 1 vector whose elements count the number of firms at
each element of the fringe state Sf . For future reference, let J d ⊂ J denote the set of
dominant firms active at a given instant in time.

Following IW (2017), we now model each firm i as tracking its own state si, the dominant
firm state sd, a vector of moments ŝ(sf ) of the fringe state sf , and the aggregate state a. We
extend the MME industry state s̄ = (sd, ŝ(sf ), a) to include the dominant firms state sd in
addition to the tracked fringe moments ŝ(sf ), and the aggregate state a. We define moment-
based bidding rules β(ciℓ|xℓ, si, s

b
ℓ, s̄), exit rules χ̄(si, s̄), and entry rules η̄(s̄) as in the main

text, bearing in mind that the MME industry state s̄ = (sd, ŝ(sf ), a) now exactly tracks the
dominant firms state sd. We extend Assumptions 1-2 and Definition 1 to accommodate this
richer information structure as follows:

Assumption 4. For any auction characteristics xℓ and any histories HJ
1 ,HJ

2 such that
si,1 = si,2 = si and s̄1 = (sd1, ŝ(s

f
1), a1) = s̄2 = (sd2, ŝ(s

f
2), a2) = s̄,

g̃b(sbℓ|xℓ,HJ
1 ) = g̃b(sbℓ|xℓ,HJ

2 ) ≡ g̃b(sbℓ|xℓ, si, s̄) ∀ sbℓ.

23In view of our parameterizations, γmn will be nonzero only for states s̄m, s̄n involving an increase or
decrease of one unit in exactly element s̄j of s̄, in which case γmn will equal either q+j (s̄m) or q−j (s̄m)
respectively.
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f Moreover, g̃b(sbℓ|xℓ, si, s̄) is equal to the long-run distribution of sbℓ conditional on (xℓ, si, s̄).

Assumption 5. For each firm i, beliefs over state transitions satisfy the following properties:

1. For each dominant rival j ∈ J d, firm i correctly perceives j’s transition process between
dominant states sj, s

′
j ∈ Sd;

2. Firm i correctly perceives transition rates in sd induced by a currently dominant firm
becoming non-dominant, with associated changes in ŝ equal to corresponding long-run
averages;

3. Firm i perceives transition rates in s̄ induced by currently non-dominant rivals becoming
dominant to follow a Markov jump process in which the perceived transition rate from
sd to sd,′ given s̄, denoted γfd(s̄

′|s̄), equals the corresponding long-run average transition
rate from s̄ to s̄ given s̄;

4. Excluding transitions from or to dominance, firm i perceives the fringe moments ŝ to
follow a Markov jump process in which the perceived transition rate from ŝ to ŝ′ given
s̄, denoted γf (ŝ

′|s̄), equals the corresponding long-run average transition rate from ŝ to
ŝ′ given s̄.

We then define an MME with dominant firms paralleling Definition 1, but substituting
Assumptions 4-5 for Assumptions 1-2. We could also, or alternatively, adapt our baseline
solution concept to allow, for example, firms to predict the impacts of their choices on
the aggregate moments ŝ as in Gowrisankaran et al. (2023). Such extensions would be
implemented similarly to the dominant-firms model described here, although with some
differences in detail due to differences in perceived transition rates.

B.1: Bidding equilibrium

First consider firm i’s bidding decision upon being matched with auction ℓ, after observing
project characteristics xℓ, the bidding state sbℓ, and their own completion cost ciℓ. Let ∆iℓ be
the deterministic change in i’s state induced by winning auction ℓ, and for each and for each
j ∈ ∪Jℓ, let ∆̄jℓ be the (deterministic) change in the MME state s̄ induced by j winning
auction ℓ (where, under the assumptions above, ∆̄jℓ = 0 if j ̸= J d). Firm i now chooses
its bid to maximize its change in continuation payoff accounting for changes in the industry
state associated with dominant firms winning auction ℓ, i.e. to solve:

max
bi

{(
bi − ciℓ + V (si +∆iℓ, s̄+ ∆̄iℓ)− V (si, s̄)

)
× Pi(bi|xℓ, si, s

b
ℓ, s̄)

+
∑

j∈J d
ℓ ,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
× Pj(bi|xℓ, si, s

b
ℓ, s̄)

}
,
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where for each j ∈ Jℓ, Pj(bi|xℓ, si, s
b
ℓ, s̄) denotes the probability that firm j wins the auction

as a function of i’s bid bi. The FOC for i’s bidding problem is

Pi(bi|xℓ, si, s
b
ℓ, s̄) +

(
bi − ciℓ + V (si +∆iℓ, s̄+ ∆̄i)− V (si, s̄)

)
× pi(bi|xℓ, si, s

b
ℓ, s̄)

+
∑

j∈J d
ℓ ,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
× pj(bi|xℓ, si, s

b
ℓ, s̄) = 0, (17)

which rearranged implies that i’s optimal bid bi must satisfy

(
bi − ciℓ + V (si +∆iℓ, s̄+ ∆̄iℓ)− V (si, s̄)

)
= −Pi(bi|xℓ, si, s

b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)

−
∑

j∈J d
ℓ ,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
× pj(bi|xℓ, si, s

b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)
. (18)

Substituting into (17), we can therefore express i’s interim bid-stage surplus as

πb
i (bi|xℓ, si, s

b
ℓ, s̄) = −Pi(bi|xℓ, si, s

b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)
Pi(bi|xℓ, si, s

b
ℓ, s̄)

+
∑

j∈J d
ℓ ,j ̸=i

(
V (si, s̄+∆̄jℓ)−V (si, s̄)

)
×

[
Pj(bi|xℓ, si, s

b
ℓ, s̄)−

pj(bi|xℓ, si, s
b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)
Pi(bi|xℓ, si, s

b
ℓ, s̄)

]
.

Consequently, integrating across realizations of bi, we can express i’s ex ante bid-stage surplus
Πb

i(xℓ, si, s
b
ℓ, s̄) in a form paralleling Jofre-Bonet and Pesendorfer (2003):

Πb
i(xℓ, si, s

b
ℓ, s̄) = Rb

i(xℓ, si, s
b
ℓ, s̄)

+
∑

j∈J d
ℓ ,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
×
[
P b
j,i(xℓ, si, s

b
ℓ, s̄)−Hb

ij(xℓ, si, s
b
ℓ)
]
, (19)

where P b
j,i(xℓ, si, s

b
ℓ, s̄) denotes the ex ante bid-stage probability that j wins an auction in

which i participates,

P b
j,i(xℓ, si, s

b
ℓ, s̄) =

∫
bi

Pj(bi|xℓ, si, s
b
ℓ, s̄) dGi(bi|xℓ, si, s

b
ℓ, s̄),

and Rb
i(xℓ, si, s

b
ℓ, s̄) and Hb

ij(xℓ, si, s
b
ℓ, s̄) are defined by

Rb
i(xℓ, si, s

b
ℓ, s̄) =

∫
bi

Pi(bi|xℓ, si, s
b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)
Pi(bi|xℓ, si, s

b
ℓ, s̄) dGi(bi|xℓ, si, s

b
ℓ, s̄)

Hb
ij(xℓ, si, s

b
ℓ, s̄) =

∫
bi

pj(bi|xℓ, si, s
b
ℓ, s̄)

pi(bi|xℓ, si, sbℓ, s̄)
Pi(bi|xℓ, si, s

b
ℓ, s̄) dGi(bi|xℓ, si, s

b
ℓ, s̄).

Note that P b
j,i(xℓ, si, s

b
ℓ, s̄), R

b
i(xℓ, si, s

b
ℓ, s̄) and Hb

j,i(xℓ, si, s
b
ℓ, s̄) are all directly identified.
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B.2: Match surplus

Next consider active firm i with state si matched to auction ℓ with characteristics xℓ, be-
fore observing the competition state sbℓ for auction ℓ. Taking expectations with respect to
unknown rival match realizations, we can express match-stage surplus for this firm i as

Πm(xℓ, si, s̄) = Rm
i (xℓ, si, s̄)

+
∑

j∈J d,j ̸=i

(
V (si, s̄+ ∆̄j)− V (si, s̄)

)
× [Pm

j,i(xℓ, si, s̄)−Hm
ij (xℓ, si, s̄)],

where, letting Ijℓ be an indicator for whether dominant firm j ∈ J d is matched to auction
ℓ, we define

Rm
i (xℓ, si, s̄) = E[Rb

i(xℓ, si, S
b
ℓ , s̄)|xℓ, si, s̄]

Pm
j,i(xℓ, si, s̄) = E[IjℓP b

i (xℓ, si, S
b
ℓ , s̄)|xℓ, si, s̄]

Hm
j,i(xℓ, si, s̄) = E[IjℓHb

j,i(xℓ, si, S
b
ℓ , s̄)|xℓ, si, s̄].

Observe that, by definition, Pm
j,i(xℓ, si, s̄) is the ex ante probability that dominant rival j ∈ J d

wins auction ℓ, conditional on firm i being matched to ℓ. Note further that Rm
i (xℓ, si, s̄),

Pm
j,i(xℓ, si, s̄), and Hm

j,i(xℓ, si, s̄) are all directly identified.

B.3: Ex ante auction arrival surplus

Finally, consider the expected surplus of an active firm with state si facing MME state
s̄ upon learning that an auction has arrived, but before observing auction characteristics
or match outcomes. If firm i is matched with auction ℓ, it receives expected net surplus
Πm(xℓ, si, s̄) characterized above. On the other hand, if firm i is not matched with auction ℓ,

its continuation value will stil change by
(
V (si, s̄+∆̄jℓ)−V (si, s̄)

)
if dominant rival j ∈ J d

wins the auction. For each j ∈ J d, let Pj,−i(xℓ, si, s̄) denote the ex ante probability that j
wins an auction with characteristics xℓ conditional on the event that i is not matched. We
can then express i’s ex ante surplus from auction arrival as

<<<<<<< LocalChangesΠ0(si, s̄) = E[Πm(Xℓ, si, s̄)m(Xℓ, si, s̄)] +
∑

j∈J d,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
======= Π0(si, s̄) = E[Rm

i (Xℓ, si, s̄)m(Xℓ, si, s̄)]

− E

 ∑
j∈J d,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
×Hm

j,i(Xℓ, si, s̄)×m(Xℓ, si, s̄)


+ E

 ∑
j∈J d,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
× Pm

j,i(Xℓ, si, s̄)×m(Xℓ, si, s̄)


+ E

 ∑
j∈J d,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄))× Pj,−i(Xℓ, si, s̄

)
× (1−m(Xℓ, si, s̄))

 . >>>>>>> ExternalChanges
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Let Pj(xℓ, si, s̄) denote the probability, before observing any match outcomes, that dominant
rival j ∈ J d wins auction ℓ with characteristics xℓ given i’s tracked information (si, s̄). Note
that, by definition,

Pj(xℓ, si, s̄) = Pj,i(xℓ, si, s̄
)
m(xℓ, si, s̄) + Pj,−i(xℓ, si, s̄

)
(1−m(xℓ, si, s̄)).

Letting R0(si, s̄) = E[Rm
i (Xℓ, si, s̄)m(Xℓ, si, s̄)], we can therefore simplify Π0(si, s̄) to

Π0(si, s̄) = R0(si, s̄)

+ E

 ∑
j∈J d,j ̸=i

(
V (si, s̄+ ∆̄jℓ)− V (si, s̄)

)
×
[
Pj(Xℓ, si, s̄)−Hm

j,i(Xℓ, si, s̄)m(Xℓ, si, s̄)
] .

In general, the change ∆̄jℓ in the aggregate state s̄ induced by firm j winning auction ℓ will
depend both on the firm’s current state sj and on auction characteristics xℓ. Importantly,
however, any combination of (j, xℓ) inducing the same next industry state s̄′ = s̄+ ∆̄jℓ will
also induce the same perceived continuation value V (si, s̄

′) for firm i. Consequently, letting
S̄(si, s̄) be the set of possible next industry states that could arise following some dominant
rival j ∈ J d, j ̸= i winning an auction, we can further simplify Π0(si, s̄) to

Π0(si, s̄) = R0(si, s̄) +
∑

s̄′∈S̄(si,s̄)

V (si, s̄
′)H0(s̄′, si, s̄), (20)

where H0(s̄′, si, s̄) is a ‘FOC-adjusted transition rate’ defined by

H0(s̄′, si, s̄) =
∑

j∈J d,j ̸=i

E

[
I[s̄+ ∆̄jℓ = s̄′]×

[
Pj(Xℓ, si, s̄)−Hm

j,i(Xℓ, si, s̄)m(Xℓ, si, s̄)
]]
. (21)

Note that H0(s̄′, si, s̄) is not the actual transition rate in s̄′ induced by dominant rivals
winning arriving auctions. Rather, it is this actual transition rate adjusted by the term

−
∑

j∈J d,j ̸=i

E

[
I[s̄+ ∆̄jℓ = s̄′]Hm

j,i(Xℓ, si, s̄)m(Xℓ, si, s̄)

]
,

which reflects the ex ante extent to which i internalizes their impact on aggregate transitions
through the bid-stage FOC for optimal bidding in auctions with which they are matched.
Crucially, however, all objects on the right-hand side of (21) are identified, which implies
that H0(s̄′; si, s̄) is directly identified. Since R0(si, s̄) is also directly identified, it follows
that we can express ex ante auction arrival surplus Π0(si, s̄) as an identified linear function
of V (si, s̄). This is expected in view of Jofre-Bonet and Pesendorfer (2003); the derivation
above simply adapts the details of that in Jofre-Bonet and Pesendorfer (2003) to our case.
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B.4: CCP representation of V (si, s̄)

Finally, we return to the Bellman equation characterizing the value function V (si, s̄). In any
instant in time, in addition to the events described in the main text, firm i must account
for transitions in s̄ induced by its own transitions from, to, or among dominant states, as
well as (i) transitions in the states of dominant rivals, (ii) transitions of dominant rivals to
the fringe, and (iii) transitions of fringe firms to dominance. For each si ∈ Si and s̄′, s̄ ∈ S̄,
let γ(s̄′, si, s̄) denote the perceived aggregate equilibrium transition rate from (si, s̄) to s̄′

induced by transitions in all rivals’ states through channels excluding auctions:

γ(s̄′, si, s̄) = γdd(s̄
′, si, s̄) + γdf (s̄

′, si, s̄) + γfd(s̄
′, si, s̄) + γff (s̄

′, si, s̄),

where γdd γdf , γfd, and γff denote, respectively, firm i’s beliefs about transition rates in s̄ in-
duced by rival dominant-to-dominant, dominant-to-fringe, fringe-to-dominant, and fringe-to-
fringe transitions through channels excluding auctions. Similarly, let ∆̄i(s

′
i, si, s̄) denote the

change in the MME state s̄ associated with a transition by i from si to s
′
i (with ∆̄i(s

′
i, si, s̄) = 0

if neither si ∈ Sd or s′i ∈ Sd). We can then express the Bellman equation defining V (si, s̄) as

ρV (si; s̄) = −cf (si, a) + λ0R
0(si; s̄) + λχI[zi = 0]Πχ(si, s̄)

+ λq(si)
(
V (s′i; s̄+ ∆̄i(s

′
i, si, s̄))− V (si, s̄)

)
+
∑
z′i<zi

δz(z
′
i, si)

(
V (s′i; s̄+ ∆̄i(s

′
i, si, s̄))− V (si, s̄m)

)
+
∑
κ′
i

δκ(κ
′
i, si)

(
V (s′i; s̄+ ∆̄i(s

′
i, si, s̄))− V (si, s̄m)

)
+
∑
s̄′∈S̄

[λ0H
0(s̄′, si, s̄) + γ(s̄′, si, s̄)]

(
V (si; s̄

′)− V (si, s̄)
)
. (22)

This again defines a linear system in V (si, s̄). Collecting terms involving V on the right
hand side, we can again express this system in compact matrix form as:

TV = −cf + λ0R
0 + λχIχΨχ + λχIχEχσχ, (23)

where T is a matrix of known or directly estimable effective transition rates, and the right-
hand side is directly identified up to the parameters cf , Ψχ, σχ. The matrix T will again be
diagonally dominant, implying that we can solve for V as a linear function of parameters.

Note that although the form of (23) appears almost identical to the main text, the ma-
trix T will be substantially different (and typically less sparse). In particular, in addition
to actual / perceived equilibrium transition rates, T will include an adjustment for opti-
mal bidding in auctions in which i participates, captured through the function H0 defined
above. Importantly, however, T, R0 and Eχ can still be consistently estimated, after which
estimation of structural parameters can proceed as in the main text.
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Appendix C: Solving counterfactuals

C.1: Contraction representation of value function

Although yielding a simple characterization of V (si, s̄), the right-hand side of equation (1)
need not be a contraction mapping. In this subsection, we derive an alternative characteri-
zation of V (si, s̄) which is a contraction mapping. Although this can be obtained by a simple
rearrangement of (1), we here provide an alternative derivation which highlights connections
between our continuous-time setting and typical discrete-time models.

Toward this end, consider firm i in MME state (si, s̄). With some abuse of notation, let
Y denote the set of possible events which could change the MME state as perceived by firm
i: i.e., auction arrival events, exit opportunity events, each possible own state transition,
and each possible aggregate state transition. For each event type y ∈ Y , let q(y|si, s̄) denote
the arrival rate of the associated event type in state (si, s̄) from the perspective of firm
i; e.g., if y is an auction arrival event, q(y|si, s̄) = λ0, if y is an exit opportunity event,
q(y|si, s̄) = λχI[zi = 0], if y is a transition the MME state from s̄m to s̄m, q(y|si, s̄) = γmn,
and similarly for all other firm state and aggregate state transition events. Let Q(si, s̄) =∑

y∈Y q(y|si, s̄) denote the sum of (perceived) arrival rates for all events which could affect
firm i’s continuation payoffs. Finally, let W (y, si, s̄) denote i’s expected continuation value
from the instant event y ∈ Y occurs onward. For example, for an auction arrival event,
W (y, si, s̄) = V (si, s̄) + Π0(si, s̄), while for a transition from s̄ to s̄′, W (y, si, s̄) = V (si, s̄

′).
Now return to firm i’s continuation value V (si, s̄). Let τ , a random variable, denote the

time until the next event y ∈ Y as perceived by firm i. In general, we can express V (si, s̄)
as the sum of two components: expected discounted flow payoffs until the time τ until the
next event Y ∈ Y , plus the discounted value from this event on:

V (si, s̄) = cf (si, s̄)E

[∫ τ

0

e−ρtdt|si, s̄
]
+ E

[
e−ρτW (Y, si, s̄)|si, s̄

]
. (24)

Furthermore, since firm i perceives s̄ to follow a Markov jump process, in each instant firm
i will perceive τ to follow a Poisson distribution with rate parameter Q(si, s̄). Moreover,
conditional on an event occurring in any instant t, firm i perceives this event to be of each
possible type y ∈ Y with probability equal to q(y|si, s̄)/Q(si, s̄). Importantly, these perceived
probabilities do not depend on τ . Bearing these properties in mind, we can simplify (24) to

V (si, s̄) = cf (si, s̄)E

[∫ τ

0

e−ρtdt|si, s̄
]
+ E[e−ρτ |si, s̄]× E

[
W (Y, si, s̄)

∣∣∣si, s̄] .
Furthermore, again applying properties of Markov jump processes, we have

E

[∫ τ

0

e−ρtdt
∣∣∣ si, s̄] = 1

ρ+Q(si, s̄)
,

E[e−ρτ |si, s̄] =
Q(si, s̄)

ρ+Q(si, s̄)
,
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and

E [W (y, si, s̄)|si, s̄] =
∑
y∈Y

W (y, si, s̄)
q(y|si, s̄)
Q(si, s̄)

. (25)

We can thus rewrite the Bellman equation (24) above in a form similar to a discrete-time
Bellman equation:

V (si, s̄) =
cf (si, s̄)

ρ+Q(si, s̄)
+

Q(si, s̄)

ρ+Q(si, s̄)
× E [W (Y, si, s̄)|si, s̄] (26)

=
cf (si, s̄)

ρ+Q(si, s̄)
+

Q(si, s̄)

ρ+Q(si, s̄)
×

(∑
y∈Y

W (y, si, s̄)
q(y|si, s̄)
Q(si, s̄)

)
.

The right-hand side of (26) equals a flow payoff term plus a state-specific “discount factor”

times an expected continuation value from the next event on. The “discount factor” Q(si,s̄)
ρ+Q(si,s̄)

represents the expected discounted time until the next event, with more rapid event arrival
rates (larger Q(si, s̄)) implying shorter “periods” and thus larger effective discount factors.
Furthermore, since V appears only in the final expected continuation value, it is straightfor-
ward to show that (26) satisfies Blackwell’s sufficient conditions for a contraction mapping,
with modulus equal to the maximum state-specific “discount factor”:

max
si,s̄

E[e−ρτ |si, s̄] = max
si,s̄

Q(si, s̄)

ρ+Q(si, s̄)
< 1.

Iteration on (26) will therefore yield V (si, s̄) as the unique fixed point.

C.2: Potential solution algorithms

We take as given a function for calculating expected bid-stage profit πb
i (xℓ, si, s

b
ℓ, s̄) given

continuation values. For a Vickrey auction, this expected bid-stage profit calculation is
relatively simple; for a low-price auction it would require solving an asymmetric low-bid
auction which is a challenging problem in itself.

The derivations in Section D.1 suggest several potential iterative approaches to solving for
a MME. The simplest would likely be a simulation-based “real-time dynamic programming”
algorithm based on (24), in which transition probabilities and continuation values are up-
dated by (i) simulating τ and Y from the current state given existing policies, (ii) simulating
or calculating endogenous instantaneous payoffs associated with these draws, (ii) updating
continuation value estimates based on (24), and (iv) updating policies based on updated
continuation values. This algorithm would essentially be a continuous-time MME version of
the algorithms proposed in Pakes and McGuire (2001) and Ifrach and Weintraub (2017)’s
Algorithm 2, and appropriately implemented should eventually converge to an MME.

One disadvantage of this simple approach is that updating (24) based on random draws
of τ and Y is effectively using random draws to approximate integrals with closed-form
analytic solutions. An alternative, perhaps superior approach would be to instead proceed
as follows: (i) simulate τ and Y from current policies, (ii) update estimates of Π0(si, s̄)
and MME transition rates γ based on these draws, (iii) update V (si, s̄) using one or more
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iterations of (26), and (iv) update dynamic policies based on updated continuation values.
This approach would still estimate the equilibrium-determined objects Π0(si, s̄) and γ via
simulation, but would use the exact forms for expectations in (26) to update V rather than
approximating these via simulation draws of continuation payoffs. Note that, in contrast to
typical discrete-time models, the sums in our continuous-time Bellman equation (26) involve
relatively few terms. I conjecture that the cost of such a simulation / Bellman algorithm
would not be much larger than the pure recursive simulation approach above, while avoiding
simulation error due to approximation of expectations with simulation draws.

A still more precise, though likely much more computationally costly, approach would be
to additionally calculate Π0(si, s̄) exactly at every iteration (approximating expectations over
auction characteristics with a fixed sample of observed auction xℓ’s). Using this approach, the
only MME object estimated by stochastic simulation would be MME transition probabilities,
as these have no analytic closed form. Again, the tradeoff would be greater precision per
iteration versus greater iteration cost.

A fourth approach, paralleling Ifrach and Weintraub (2017)’s Algorithm 1, would be to
iterate the following steps: (i) Fully solve value functions given beliefs over MME transition
probabilities, (ii) given policies, simulate a long time path of the model, and (iii) update
MME transition probabilities based on simulated histories. This approach would probably
be the most precise, but would involve the highest cost per iteration. For this reason, Ifrach
and Weintraub (2017) suggest using a real-time dynamic programming algorithm to find a
solution and this full solution approach to verify the solution has converged.

In addition, we may wish to maintain the exact belief parameterizations imposed in
estimation (e.g., that beliefs over match profit are formed via a linear regression, and that
beliefs over aggregate state transition rates take a particular parametric form). In this case,
it should be possible to augment the simulation steps above with belief update steps in
which regression coefficients and MME transition parameters are iteratively updated based
on new simulation draws. For linear regression, where parameter estimates are given in closed
form, this iterative update is relatively easy (one need only update the sums appearing in
the standard OLS formula to reflect new observations). For MME transition beliefs, the
update would be more complicated as the MLE solution would depend on all simulation
draws (not just recent draws). I think, however, that one could borrow techniques from
machine learning such as batch gradient descent with averaging to update parameters using
information contained only in recent simulation draws.

For the moment, we focus on relatively simpler algorithms which do not aim to maintain
the same parametric structure on beliefs in the counterfactual. With these in hand, I con-
jecture it will be relatively simple to extend the solver to incorporate particular parametric
structure on beliefs following the ideas above.

Appendix D: Description of Variables

Experience (past win counts)
We proxy a firm’s experience with its past number of TxDOT projects won. Note that here
we use all data from 1998 and build histories for firms that enter before January 2000. Each
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firm’s win count history is updated through our analysis period. Note that 214 out of state
firms participate as prequalified firms, and, on average, they bid on projects worth about
$10 million. These large firms have a history of winning projects in multiple states, and we
assume their initial win count is 25 when they join the TxDOT market for the first time.
This win count of 25 corresponds to the average count of Texas based prequalified firms’ past
win counts. The remaining 32 non-prequalified firms bid on projects worth about $215,000,
and we consider them inexperienced firms.

Backlog
A backlog variable is constructed for each month for all planholders in the data set. At the
start of the panel in 1997 or for new entrants, each bidder’s backlog is initialized to zero. As
a bidder wins projects, the dollar value of the project is added to the backlog of the bidder
in the month of the bid letting. As the project commences, the backlog is worked off by
subtracting the incoming data on project payments. The length of the project is constructed
using the calendar day variable. The substantial number of years of data available prior to
the analysis sample (1998-2000) allows us to initialize the backlog series with two years of
data. Backlog values are converted to January 2000 constant-dollar (in millions) values using
TxDOT HCI.

Firm’s market share
To measure the size of each firm over time, we construct a proxy for firm capacity.Note that
a contractor may request project details only for projects whose total ECEs do not exceed
bidding capacity less the firm’s backlog. Motivated by this institutional feature, for each
firm and month, we first define a proxy for within-month used capacity as the firm’s backlog
plus the sum of ECEs among projects for which the firm held plans within the month. We
then construct a proxy for the firm’s capacity in a given month as the maximum, over the
past 18 months, of these within month used capacities. We normalize this firm-level capacity
variable by the sum of capacities for all firms within the month. We use the resulting variable
as a proxy for the market share of each firm over time.

Fully prequalified firm
A firm that has provided an audited financial statement prepared by an independent Certified
Public Accountant along with a completed Texas Department of Transportation (TxDOT)
‘Confidential Questionnaire’ and other required supporting documents.

Registered firm but not fully prequalified
All bidders must at least complete the ’Bidder’s Questionnaire’ (BQ) form and provide
all additional requested information in order to comply with the requirements for bidding.
Firms that only fill the BQ can submit bids only on ’waived’ project. TxDOT waives the
prequalification requirement for small construction, maintenance, and special projects that
are valued at less than $300,000.

Firm’s distance to the project location
For each contractor, we mapped their address into longitudinal and latitude coordinates
and used them when calculating the distance to a project. For the project location, the
coordinates of the centroid of the county where the project is listed is used. The distance
variable is constructed using the ’vincenty’ stata code that calculates distances based on
geodesic differences between two points.

Waived auction
A project that does not have the prequalification requirement is categorized as a waived
auction. The variable ’waived’ takes the value of one for a waived auction and zero otherwise.

Bid
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This is the total bid submitted by a bidder for a project. The bid consists of all values for
tasks to be completed and sum of these tasks is the total bid.

Engineer’s cost estimate
TxDOT engineers’ cost estimate for the project. This is the estimated value of all tasks
(number of units multiplied by unit price) to be performed in order to complete the project.
All estimates are converted to January 2000 constant-dollar (in millions) value using highway
cost index (HCI) provided by TxDOT.

Number of tasks to complete the project
The item-level information in a project design plan is a list of all items defining the tasks
to be completed. An individual item could be the amount and type of asphalt to be used
on a paving project, the length of the guardrail to be installed, the number and type of
signage to be placed at a project, the square yards of earth that need to be moved, or the
type, size and quantity of trees to be planted. Each item is described by an 8-digit code, a
detailed description of the item, a unit of measure for an item (e.g., square meters, linear
feet, gallons) and the quantity to be installed.

Days to complete the project (calendar days)
TxDOT estimated the length of the project in calendar days provided with design plans.

Number of planholders
Plan holders are potential bidders who have requested design plans for a project from Tx-
DOT. When a firm requests plans, they become registered planholders. This information is
public and available prior to bid letting. Hence all potential bidders know the set of poten-
tial rivals. Total number of firms that requested plans are the number of planholders in an
auction.

Number of bidders
The number of firms that submitted bids in an auction.

Federal project
Projects are funded by Federal or State funds. The federal project variable takes the value
of one for federally funded projects and zero otherwise.

Project types
We categorize projects into six types based on the material shares of a project. The six
material groups for projects based on bid items is described by the ”Standard Specifications
for Construction and Maintenance of Highways, Streets, and Bridges” code book adopted
by TxDOT. These six material cost shares are constructed from detailed information on bid
items and the project’s overall engineering cost estimate. These include: 1) asphalt surface
work (i.e., hot-mix asphalt); 2) earth work (i.e., excavation); 3) miscellaneous work (i.e.,
mobilization); 4)structures (bridges); 5) subgrade (i.e., Proof Rolling); and 6) lighting and
signaling work (i.e., highway sign lighting fixtures).

Project zones
We also categorize projects into five zones identified by TxDOT in order to control for
physical features of areas as they require different grades of material to complete a project.

Additional days
For every completed project, TxDOT reports the number of additional (or fewer) days taken
to complete the project beyond the original estimated days.

Final pay
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The final total value a winning firm received after completion of the project. This pay may
differ from the winning bid submitted at bid letting due to under or overruns and project
modifications.

The sum of past win counts of all plan holders in the auction
This variable is the sum of all planholders’ win counts for a given auction.

The sum of the backlog of all planholders in the auction This is the sum of plan-
holders’ backlog in each auction.

The sum of market share of all plan holders in the auction This is the sum of the
firm-level market share for a given auction.

Rivals’ minimum distance to the project location
For each planholder in a given auction, we construct its rivals’ minimum distance to the
project location based on rivals’ distance to the project location.

The total value of the backlog of all planholders in the market
This is the sum of all active firms’ backlog in the market in each month.

The total number of competitors in the market
This is the sum of the number of active firms in the market for each month.

The total number of prequalified competitors in the market
This is the sum of the number of active prequalified firms in the market in a given month.

The total value of new building permits in Texas
This is the total value of new building permits approved for single-family, 2-4 family and 5-
plus family units in Texas. These monthly data are provided by the Texas A & M University
Real Estate Research Center (https://www.recenter.tamu.edu/data/building-permits)
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