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Abstract

We study a dynamic moral hazard problem involving initial exploration followed by

exploitation, merging experimentation with dynamic corporate finance. We show how the

methods and conclusions of the experimentation literature change when considering the

exploitation phase’s non-monotonic payoff structure that arises naturally in the presence

of moral hazard and limited liability. In particular, the agent’s incentive constraints may

be slack during the exploration phase, which affects compensation dynamics and can

reduce inefficiencies from under-experimentation.

1 Introduction

Many economic situations are characterized by an initial phase of exploration, a breakthrough

that establishes profitability, and a subsequent phase of exploitation. For example, startup

firms often first come up with a working prototype of their product and, after successful

development, move on to mass production and sales. The goal of this paper is to study

the optimal contract design for such a multistage project. We highlight how the properties

of the optimal contract for experimentation hinge on the nature of the payoff structure in

the exploitation stage. Importantly, this allows us to connect the dynamic corporate finance

literature to the experimentation literature and show how both the methods and conclusions

of the latter may be modified.

Concretely, we consider a continuous-time contracting model of a multistage project that in-

volves an initial exploration phase, a breakthrough, and a subsequent exploitation phase. The

exploration phase is modeled as an exponential bandit problem. A deep-pocketed principal

hires a financially constrained agent protected by limited liability. Both players are ex-ante
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symmetrically uncertain about the profitability of the project, which may be good or bad.

To maintain tractability, we impose the standard assumption that a bad project can never

succeed so that success perfectly reveals that the project is good (Keller et al., 2005). The

principal incurs an operational flow cost to keep the project running. The agent can exert

effort, which increases the instantaneous success rate of the project. In most of our analysis,

we assume that the project can only succeed if the agent exerts effort. In the later part of the

paper, we analyze the implications of the possibility of success without effort. Effort is costly

to the agent and is unobservable to the principal. Thus, off the equilibrium path, deviations

by the agent can lead to differences in beliefs between the two players. Success is publicly

observed. If the project succeeds, it achieves a breakthrough, and the relationship transitions

into the exploitation stage.

The key feature of our model is that the shape of the exploitation value function (i.e., the

principal’s maximum exploitation profit that delivers a certain level of exploitation utility to

the agent) has important implications for the division of surplus between the players in the

exploration stage, which in turn determines the optimal contract design. To capture both the

prior literature on exponential bandits and a large literature in dynamic corporate finance,

we consider two cases regarding the shape of the exploitation value function:

Case 1) Downward-Sloping Exploitation Value Function

Suppose the breakthrough generates a fixed reward, and the production technology yields

no additional value afterward. Then, the two players split the fixed reward upon success,

so the principal’s exploitation value function must be affine and strictly decreasing in the

agent’s exploitation utility, as illustrated in Figure 1-(a). This specification of the exploitation

value function is in line with the one considered in the prior literature on contracting with

exponential bandits (Bergemann and Hege, 1998, 2005; Hörner and Samuelson, 2013; Halac

et al., 2016).

Case 2) Inverted-U Shaped Exploitation Value Function

We will mostly focus on the case when the principal’s exploitation value function is inverted

U-shaped as in Figure 1-(b). This specification for the shape of the principal’s exploita-

tion value function arises in several canonical models in the dynamic contracting literature

(Quadrini, 2004; Clementi and Hopenhayn, 2006; DeMarzo and Sannikov, 2006; DeMarzo

and Fishman, 2007a,b; Vereshchagina and Hopenhayn, 2009; DeMarzo et al., 2012; Fuchs

et al., 2022).1

Working with reduced-form payoffs for the exploitation stage allows us to highlight the broad

1See Hörner (2013) for a clear exposition on why the principal’s value function takes this form in many
dynamic contracting environments.
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Figure 1: Exploitation Payoff Sets

applicability of our methods and findings.

Before discussing the results, we highlight that the contracting problem we study poses

two methodological challenges. First, the possibility of persistent private information can

complicate the analysis since it may make multistage deviations profitable (see, for instance,

Fernandes and Phelan (2000)). 2 Therefore, we modify the standard martingale approach to

account for the agent’s incentive to deviate from the effort recommendation.

Second, temporary incentive compatibility constraints may not always bind under the optimal

contract. Thus, it is restrictive to confine the analysis to contracts with binding temporary

incentive compatibility constraints. This precludes us from using some standard methods in

the continuous time contracting literature. Instead, we extend Grossman and Hart (1983)’s

two-step approach and apply techniques in dynamic control theory to derive the optimal

contract.

Our analysis proceeds as follows. First, we solve for the optimal contract that incentivizes the

agent to exert effort until a fixed termination time. 3 Second, we look for the termination

time that maximizes the principal’s expected total profit. Each step involves an optimal

control program, whose optimality conditions can be characterized by Pontryagin’s maximum

principle and dynamic envelope theorems.

2In our model, in the exploration stage, if the agent deviates from the principal’s effort recommendation
(which only occurs off the equilibrium path), the agent can acquire private information about profitability and
potentially enjoy an information rent afterward.

3As discussed below, when the principal’s investment cost per unit time is sufficiently high, it entails no loss
of generality to restrict our attention to recommendations in which the agent exerts effort until the termination
time.
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Our main result is that the optimal contract design crucially depends on the shape of the

principal’s exploitation value function. In particular, when the exploitation value function is

inverted U-shaped, the agent’s temporary incentive compatibility constraint may be slack for

a positive duration of time in the exploration phase. More strikingly, there exist a range of

parameters for which the temporary incentive compatibility constraint in the optimal contract

never binds throughout the entire exploration phase. In contrast, when the exploitation value

function is downward-sloping, the temporary incentive compatibility constraint must always

bind in the exploration phase under the optimal contract.

The intuition is as follows. When the principal’s exploitation value function is downward-

sloping, she finds it optimal to minimize the agent’s rent upon success. Therefore, at any

time in the exploration phase, the principal promises the agent the minimal rent upon success

required to elicit his effort, which results in binding temporary incentive constraints at all

times. In contrast, when the exploitation function is inverted U-shaped, the principal can

potentially benefit from promising an additional rent upon success. Therefore, it may be

profitable to “overcompensate” the agent with an exploitation utility that exceeds the minimal

level needed for incentive provision, which in turn might slacken the temporary incentive

constraint.

The shape of the exploitation value function has two additional implications for the optimal

contract design. First, we compare two environments: one with an inverted inverted U-

shaped value function and another with a downward-sloping value function. Furthermore,

assume that the principal’s profits attainable in the former are lower than those in the latter

for any promised exploitation payoff to the agent. Surprisingly, we show that the former can

still induce longer experimentation in the optimal contract.

Intuitively, when the principal’s exploitation value function is downward-sloping, she incurs

an additional shadow cost from extending the duration of experimentation. In contrast, with

an inverted U-shaped value function, the principal finds it less costly to promise additional

rent to the agent upon success. Consequently, she has less incentive to minimize the agent’s

exploitation utility by reducing the duration of experimentation, potentially reducing the

loss from under-experimentation. Thus, an inverted U-shaped value function, despite being

strictly lower, can induce more experimentation and reduce inefficiency in the optimal ex-

perimentation contract. This implies that when considering the duration of experimentation

contracts, we must consider not just the magnitude of the attainable ex-post values but also

their shape.

Second, when the principal’s exploitation value function is inverted U-shaped, the agent’s ex-

ploitation utility stays constant over a time interval when the temporary incentive constraint
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is slack. In particular, if the temporary incentive constraint is always slack, the principal

implements the exploitation contract that maximizes her exploitation utility (i.e., promises

W ∗ in Figure 1-(b)). Heuristically, absent the temporary incentive constraint, the principal

strictly prefers to promise W ∗ to the agent upon success in order to maximize her exploitation

profit. Therefore, until the temporary incentive constraint tightens and prevents her from

doing so, she promises the same exploitation utility to the agent for a positive duration of

time.

Our paper highlights the importance of considering the structure of exploitation payoffs when

designing incentives during the exploration phase and conducting empirical tests in environ-

ments that involve learning. For example, if the exploitation value function is downward-

sloping, the agent’s compensation for achieving a breakthrough increases over time, which

contradicts commonly observed compensation practices.4 In contrast, if the exploitation

value function is inverted U-shaped, our paper can provide a micro-foundation for “milestone

contracts” observed in the venture capital industry. Namely, the principal (e.g., venture cap-

italist) promises a fixed percentage of share capital to the agent (e.g., entrepreneur) if the

project meets a pre-specified milestone by a certain deadline. Thus, taking into account the

structure of exploitation payoffs may help generate more realistic predictions.

Our main analysis focuses on the case where the project can only succeed when the agent

exerts effort. Under this assumption, the temporary incentive compatibility constraint can

only be slack at the beginning of the exploration phase, which greatly facilitates the derivation

of the optimal contract. In the later part of the paper, we relax this assumption and show

that the temporary incentive compatibility constraint can be slack in multiple time intervals

in the optimal contract. In so doing, we provide additional insights on how the principal can

slacken the temporary incentive constraints to maximize her payoff.

Our paper builds on the prior literature on contracting with exponential bandits (Bergemann

and Hege, 1998, 2005; Hörner and Samuelson, 2013; Halac et al., 2016). In these works, the

initial breakthrough generates a fixed reward and leads to the termination of the relationship

afterward. In contrast, we consider a general specification of the principal’s exploitation

value function that incorporates both the prior literature and the dynamic corporate finance

literature. By doing so, we show that the temporary incentive constraint may not always be

tight in the optimal contract and develop a general procedure that characterizes the optimal

contract.

Green and Taylor (2016) analyze contracting for a multistage project in the absence of learn-

4In the venture capital industry, entrepreneurs’ shares tend to become diluted whenever new funds are
provided. see, for instance, Sahlman (1990); Lerner (1995); Gompers (1995).
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ing. They focus on incentivizing the agent to truthfully report an intermediate breakthrough,

which is privately observed by the agent. In contrast, we consider the case where the break-

through is publicly observable and instead face the challenge that the agent can privately

learn about the profitability of the project off the equilibrium path. Furthermore, we identify

conditions for which the temporary incentive compatibility constraint should be slack in this

environment.

Finally, Khalil et al. (2020) also study contracting for a multistage project with exponential

bandits. More specifically, they study an adverse selection problem in which the agent has

private information about its effort cost, whereas we consider a moral hazard problem in

which the agent’s past effort choices are unobservable to the principal. Therefore, the two

papers are concerned with different information frictions.

2 Setup

2.1 Environment

Time is continuous and indexed by t ∈ [0,∞). A deep-pocketed principal (referred to as

“she”) can contract with a cashless agent (referred to as “he”) to operate a project of unknown

profitability, denoted by θ ∈ {G,B}. A project with θ = G is called a good project, whereas a

project with θ = B is called a bad project. Both players are risk-neutral, live forever, discount

future payoffs at a common discount rate r > 0, and share a prior belief P0(θ = G) = π0 ∈
(0, 1).

At t = 0, the principal offers a long-term contract to the agent, who can either accept or

reject it. If the agent accepts the contract, the principal will be committed to the contractual

terms afterwards. Let us heuristically outline how the “stage game” proceeds during the

infinitesimal time interval [t, t + dt]. At time t, the principal invests i > 0 per unit time to

run the project. After the investments are sunk, the agent privately chooses to either exert

effort (at = 1) or shirk (at = 0). His flow effort cost at time t is given by catdt for some

c > 0.

The project can either fail or succeed over the interval (t, t+ dt]. Project success is modelled

as a single jump process whose time-t instantaneous success rate is λat × 1{θ=G} with λ > 0.

Therefore, the project can potentially succeed at time t only if (1) the agent exerts effort at

time t (i.e., at = 1), and (2) Nature chooses a good project (i.e., θ = G). Let τ denote the

random time at which success occurs, with τ = ∞ if the project never succeeds. In Section

5, we extend our analysis to the model in which the project can potentially succeed even

without the agent’s effort.
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If the project fails, it generates zero flow revenues. Following a failure, the project can

either be continued or irreversibly terminated. We denote termination time by T . Upon

termination, each player earns a zero reservation payoff.5

If the project succeeds, it leads to a breakthrough in the contractual relationship. Let us

provide an abstract, reduced-form representation of continuation play in the exploitation

phase. In particular, in case success occurs at time t, a player’s time-t continuation payoff

(i.e., the expected value of the player’s discounted future payoff beginning at time t) shall be

expressed as

WS
t for the agent, V (WS

t ) for the principal. (1)

Henceforth, we refer to WS
t as the agent’s exploitation utility upon success at time t, and

V (·) as the principal’s exploitation value function. Verbally, V (WS
t ) represents the princi-

pal’s maximal continuation profit in the exploitation phase that delivers the agent WS
t upon

success at time t. We require that WS
t ≥ 0, which reflects either the agent’s interim partici-

pation constraint or the limited liability constraint. This requirement precludes the first-best

outcome in which the principal “sells the enterprise” to the agent.

Throughout the paper, we impose the following regularity Assumption on the exploitation

value function:

Assumption 0. The principal’s exploitation value function V : R+ → R has the following

properties:

(i) The function V (·) is concave and differentiable with V ′ ≥ −1.

(ii) The function V (·) has a unique maximizer W ∗ ≥ 0.

Both Conditions (i) and (ii) are not overly restrictive and satisfied in many canonical models of

moral hazard.6 These regularity conditions ensure that the principal’s optimization program

has a well-defined solution.

Let us formally define the players’ strategies in the exploration phase. A contract Γ specifies

termination time T and a continuation planWS := {WS
t }t≤T in the exploitation phase, which

is a sequence of the agent’s exploitation utility WS
t ≥ 0 upon success at time t.7 In response,

5All our main results continue to hold even when (1) the players’ reservation payoffs are assumed to be
weakly positive, (2) when the project generates positive flow outputs upon failure, or both.

6See, for instance, Quadrini (2004) and Hörner (2013) for a lucid exposition as to why value functions in
many dynamic contracting papers are often concave and have a derivative weakly greater than −1.

7Since V ′ ≥ −1, it entails no loss of generality to backload compensation until the exploitation phase.
Thus, even if we allowed the principal to pay nonnegative fixed wages to the agent in the exploration phase,
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the agent chooses his action strategy a := {at}t≤τ∧T in the exploration phase.8 In keeping

with the prior literature on dynamic contracting with learning (DeMarzo and Sannikov, 2017;

He et al., 2017), we confine our attention to pure strategies so that in equilibrium, all players

make the same inference about the past path of play. Moreover, for technical purposes, we

require that an action strategy a must be F -predictable, where F := {Ft}t≥0 is the filtration

generated by the outcome process {1{τ≤t}}t≥0. This implies that the agent’s action choice at

at time t depends only on the outcome history up to (but excluding) time t. Also, to maintain

tractability, we assume that the exploitation utility WS
t must be absolutely continuous with

respect to time.9

2.2 Contracting Problem

As is standard in the dynamic contracting literature, we focus on contracts with a front-loaded

effort recommendation, under which the agent is recommended to exert effort throughout the

exploration phase (i.e., at = 1 for each t ≤ τ ∧T ). This restriction entails no loss of generality

if the principal’s investment cost i > 0 per unit time is sufficiently large.10 At the beginning

of the supergame, the principal offers a contract Γ that solves the following optimization

program:

max
a,T,WS

Ea

[
exp(−rτ)V (WS

τ )× 1{τ≤T} − i

∫ τ∧T

0
exp(−rt)atdt

]
(2)

subject to: Ea

[
exp(−rτ)WS

τ × 1{τ≤T} − c

∫ τ∧T

0
exp(−rt)atdt

]
≥Eâ

[
exp(−rτ)WS

τ × 1{τ≤T} − c

∫ τ∧T

0
exp(−rt)âtdt

]
for any action strategy â,

(IC)

where Ea is the expectation operator associated with the probability measure induced by an

action strategy a and the prior belief that P0(θ = G) = π0. Henceforth, the constraint (IC)

shall be referred to as the full incentive compatibility constraint, which requires that the agent

must find it optimal to adhere to the strategy recommended by the principal.11

the principal would find it suboptimal to do so.
8For any pair (t1, t2), we denote the minimum of t1 and t2 by t1 ∧ t2, and the maximum of t1 and t2 by

t1 ∨ t2.
9This requirement is useful when applying Pontryagin’s maximum principle, as it rules out discontinuity

with respect to time.
10Note that even for small i > 0, the principal always recommends a front-loaded effort recommendation

under fully observable effort, so it is natural to restrict our attention to this class of recommendations.
11By the full incentive compatibility constraint (IC), the agent’s equilibrium continuation utility must be

higher than his continuation utility from always shirking, which yields the agent a continuation utility weakly
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3 Reformulation of Contracting Problem

In Section 3, we modify the martingale approach à la Sannikov (2008) to reformulate the

incentive compatibility constraint. This alternative representation allows us recast the con-

tracting problem as an optimal control problem. In so doing, we can make use of standard

techniques in optimal control theory to derive the optimal contract.

Let us first introduce additional notations. Denote by PG
a the probability measure induced

by the agent’s action strategy a from the perspective of someone that knows that the project

is good. Let EG
a denote the expectation operator associated with the probability measure PG

a .

The probability measure PG
a is a convenient tool to reformulate the incentive compatibility

constraint in the exploration phase because the agent’s past deviation has no effect on this

probability measure. Therefore, it allows us to apply the martingale approach even when the

agent’s deviation can create a divergence between the two players’ belief.

For any t ≤ τ ∧ T , define

WG
t (Γ, a) := EG

a

[
exp(−r(τ − t))WS

τ × 1{τ≤T} − c

∫ τ∧T

t
exp(−r(s− t))asds

∣∣∣∣∣Ft

]
, (3)

to be the agent’s time-t equilibrium continuation utility under contract Γ, from the perspec-

tive of someone that knows that the project is good. Moreover, the process WG(Γ, a) :=

{WG
t (Γ, a)}t≤τ∧T is formally F -adapted, implying that the continuation utility under the

probability measure PG
a given in Equation (3) is evaluated after the realization of the project

outcome at time t. Since success perfectly reveals that the project is good, we must have

WG
t (Γ, a) = WS

t upon success at time t ≤ T .

The remainder of Section 3 is organized as follows. In Subsection 3.1, we derive the “promise-

keeping constraint” under the probability measure PG
a , which describes the law of motion for

the agent’s continuation utility WG
t (Γ, a) under the probability measure PG

a . In Subsection

3.2, we reformulate the full incentive compatibility constraint (IC) for contracts with a front-

loaded effort recommendation. In Subsection 3.3, we rely on these contractual constraints

to recast the original contracting problem (2) as an optimal control program, and consider

another optimal control program that represents the more constrained version of the problem

(2).

higher than his reservation utility. Therefore, any incentive compatible contract must always satisfy the agent’s
ex interim participation constraints.
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3.1 Promise-Keeping Constraint Under Probability Measure PG
a

We next derive a bookkeeping equation that describes the evolution of the agent’s continua-

tion utilityWG
t (Γ, a) under the probability measure PG

a . We rely on the martingale techniques

developed in the continuous-time contracting literature (Sannikov, 2008; Biais et al., 2010).

For any t ≤ τ ∧ T , consider an auxiliary variable that represents the time-t expectation of

his lifetime utility under the probability measure PG
a :

UG
t (Γ, a) := EG

a

[
exp(−rτ)WS

τ × 1{τ≤T} − c

∫ τ∧T

0
exp(−rt)dt

∣∣∣∣∣Ft

]
. (4)

Note that this expression makes use of the front-loaded nature of the effort recommendation,

so that at = 1 for all t ≤ τ ∧T. By the Law of Iterated Expectations, the process UG(Γ, a) :=

{UG
t (Γ, a)}t≤τ∧T must be a martingale under the probability measure PG

a with respect to the

filtration F . Since this filtration is induced by outcome histories, we can apply the martingale

representation theorem for point processes to UG(Γ, a) to yield the following result:12

Lemma 1. For any contract Γ, there exists an F -predictable process βG(Γ, a) := {βG
s (Γ, a)}t≤τ∧T

by which the posterior lifetime utility process UG(Γ, a) under the probability measure PG
a can

be represented as follows:

UG
t (Γ, a) = UG

0 (Γ, a) +

∫ t

0
exp(−rs)βG

s (Γ, a)
{
dNs − λds

}
, (5)

for any t ≤ τ ∧ T .

The proof of Lemma 1 is standard and can be found in, for example, Biais et al. (2010).

The “martingale representation” given by Equation (5) has the following economic interpre-

tation. After appropriately adjusting for discounting, the instantaneous change in UG
t can

be expressed as the product of two terms: (1) an increment dNt −Λtdt that reflects whether

there was a jump at time t, and (2) a term βG
t that reflects the sensitivity of the agent’s

continuation utility under the probability measure PG
a to success at time t.

Taken together, two Equations (3) and (5) imply:

UG
t (Γ, a) = −c

∫ t

0
exp(−rt)ds+ exp(−rt)WG

t (Γ, a),

for any t ≤ τ ∧ T . After plugging the “martingale representation” given in (5) into the left

12See, for instance, Theorem T9 on page 64 in Chapter 3 of Brémaud (1981).
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side of the equation above, differentiation yields the following law of motion:

dWG
t (Γ, a) =

[
rWG

t−(Γ, a)− λβG
t (Γ, a) + c

]
dt+ βG

t (Γ, a)dNt, (6)

for any t ≤ τ ∧ T , where WG
t−(Γ, a) := lim

s↑t
WG

s (Γ, a) represents the left-limit of the process

WG(Γ, a) with respect to time at t.

With a slight abuse of notation, we suppress the dependence on the contract Γ and let WG
t

denote the agent’s equilibrium continuation utility under the probability measure PG
a after

the project has failed up to and including time t. Also, define
∂WG

t
∂t to be its time derivative

given by the drift term in Equation (6), and βG
t to be the increase in the agent’s time-t

continuation utility under the probability measure PG
a upon success at time t.

In this notation, Equation (6) states that the agent’s equilibrium continuation utility WG
t

increases to WG
t +βG

t upon success at time t, which coincides with WS
t by the definition given

in (6). Moreover, WG
T = 0, which reflects the agent’s reservation payoff upon termination. In

summary, we have:

∂WG
t

∂t
= rWG

t − λβG
t + c for any t ≤ T, WG

T = 0;

WS
t = WG

t + βG
t for any t ≤ T.

(PKG)

Henceforth, we refer to the system of equations in (PKG) as the promise-keeping constraint

under the probability measure PG
a . The constraint keeps track of the principal’s utility promise

to the agent under the continuation contract, when evaluated on the basis of the probability

measure PG
a .

Since the boundary value problem in the first line of the constraint (PKG) is linear, its

solution can be explicitly expressed as follows:

WG
t =

∫ T

t
exp(−r(τ − t))

(
Λsβ

G
τ − caτ

)
dτ. (7)

Hence, once the termination time T > 0 and the sensitivity process βG := {βG
t }t≤T are

both determined, we may pin down the continuation plan WS := {WS
t }t≤T in the exploita-

tion phase based on the integral expression in (7) and the promise-keeping constraint in

(PKG).
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3.2 Temporary Incentive Compatibility Constraints

Let us make use of the sensitivity process βG to reformulate the full incentive compatibility

constraint (IC) under a contract with a front-loaded effort recommendation. To facilitate the

reader’s intuition, we begin with heuristic arguments and then continue by stating the more

formal result.

Consider a “discretized” version of our model in which the agent can adjust his actions only at

time points in T (∆) := {0,∆, 2∆, ...}, where ∆ > 0 represents a sufficiently short duration of

time. Fix any contract Γ and an action strategy â in which the agent may potentially deviate

from the recommended action until time t̂ ∈ T (∆) and exerts effort afterward. Under the

contract-action pair (Γ, â), for any outcome history in which the project has failed up to and

including time t (≤ T ), define πA
t to be the agent’s time-t belief that the project is good,

and πP
t to be the principal’s belief that the project is good. By Bayes’ Rule, the belief pair

(πP
t , π

A
t ) obeys the following law of motion:

dπP
t =− λπP

t (1− πP
t )dt, dπA

t = −Λ̂tπ
A
t (1− πA

t )dt for any t ≤ T ;

πP
0 =πA

0 = π0,
(8)

where Λ̂t := λât is the instantaneous success rate of a good project at time t implied by

the agent’s action strategy â. Note that the principal can never observe the agent’s action

strategy, so she updates her belief based on her recommendation.

After the project has failed up to time t−∆, the agent believes that a good project succeeds

once over [t − ∆, t) with approximate probability (1 − exp(−Λ̂t∆)), and fails with residual

probability. Therefore, the agent’s expected continuation utility after the project has failed

up to time t̂ can be approximated as follows:

−cât + πA
t exp(−r∆)

(
(1− exp(−Λ̂t∆)(WG

t + βG
t ) + exp(−Λ̂t∆)WG

t

)
−(1− πA

t )c

∫ T

t
exp(−r(s− t))ds+ o(∆),

where the two approximations of the agent’s continuation value at time t in the first line

(i.e., WG
t + βG

t and WG
t ) are given by the promise-keeping constraint (PKG) under the

probability measure PG
a . Therefore, the marginal increase in the agent’s time-(t−∆) expected

continuation utility from exerting effort over [t−∆, t) can be approximately as follows:

πA
t

(
1− exp(−λ∆)

)
exp(−r∆)βG

t − c+ o(∆). (9)
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After dividing by ∆ > 0 and letting ∆ → 0, the expression above tends to:

λπA
t β

G
t − c,

which represents the continuous-time limit of the marginal increase in the agent’s expected

continuation utility from exerting effort at time t.13

Assume that for almost every t ≤ T,14

βG
t ≥ c

λπP
t

(10)

at time t. Suppose, to the contrary, that the agent’s optimal strategy â induces him to shirk

for a positive duration of time until time t̂ and exert effort afterward. It entails no loss of

generality to assume that the strategy â induces the agent to shirk at time t̂ because we may

always redefine t̂ this way. Since the agent shirks for a positive duration of time before time t̂,

the agent must be more optimistic about profitability than the principal under the contract-

action pair (Γ, â) after the project has failed up to time t̂ (i.e., πA
t̂
> πP

t̂
). Therefore, whenever

Condition (10) is satisfied, the marginal increase in the agent’s expected continuation utility

from exerting effort λπA
t̂
βG
t̂
−c at time t̂ is strictly positive, implying that the agent is strictly

better off by exerting effort at time t̂. However, this contradicts with the hypothesis that the

strategy â is optimal for the agent. Therefore, there exists no profitable deviation from the

principal’s effort recommendation.

Conversely, assume that the principal’s effort recommendation is incentive compatible. There-

fore, it must be sequentially rational for him to exert effort throughout the exploration phase.

Therefore, along the equilibrium path of play, the agent’s decision to exert effort must weakly

increase his expected continuation utility at time t̂, which implies that the inequality in (10)

must hold true for any t ≤ T .

The next lemma formalizes these intuitive arguments:

Lemma 2. For any contract Γ, it is optimal for the agent to always exert effort in the

exploration phase if and only if

βG
t ≥ c

λπP
t

(TIC)

for almost every t ≤ T .

13Note that since effort is F -predictable, the agent’s effort is chosen prior to the realization of the outcome
at time t.

14Consistent with the standard terminology in measure theory, “for almost every t(≤ τ)” means every time
except potentially on a time set with zero Lebesgue measure.
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Proof. In the Appendix.

In the dynamic contracting literature, the condition (TIC) often is frequently called the tem-

porary incentive compatibility constraint (Green, 1987; Fernandes and Phelan, 2000; Kapička,

2013). Lemma 2 asserts that when checking the incentive compatibility of a contract with a

front-loaded effort recommendation, it suffices to consider only “temporary deviations,” i.e.,

alternative strategies in which the agent shirks at time t and exerts effort all the other times

in the exploration phase.

Remark 1. It is noteworthy that under a contract with a front-loaded effort recommendation,

the temporary incentive compatibility constraint (TIC) forms a sufficient condition for the full

temporary incentive compatibility constraint (IC). In many models on dynamic contracting

with persistent private information, it is crucial to account for the possibility of “double de-

viations,” namely, that after having deviated from the past recommended actions, the agent

may face an additional incentive to further deviate from his recommended actions.15 In our

framework, once the agent deviates from the principal’s effort recommendation, he becomes

more optimistic about profitability and has a weaker incentive to shirk in the future. There-

fore, for any contract with a front-loaded effort recommendation, as long as the temporary

incentive compatibility constraint (TIC) is satisfied in the exploration phase, it is sequentially

rational for the agent to exert effort even after having shirked in the past.

3.3 Optimal Control Problems

We recast the original contracting problem (2) based on contractual constraints (PKG),

(TIC), and the front-loaded nature of effort recommendations. By the Law of Iterated Ex-

pectations and direct computations, we may transform the problem in (2) into the following

optimal control problem:

max
(βG,WG, T )

s.t. (PKG),(TIC)

[
π0

∫ T

0
exp(−(r + λ)τ)

(
λV (WG

τ + βG
τ )− i

)
dτ − (1− π0)

(
1− exp(−rT )

r

)
i

]
.

(11)

In the spirit of Grossman and Hart (1983), we also consider a constrained optimization

program that induces the agent to exert effort until a given termination time T > 0. Formally,

for each T > 0, an incentive scheme IT refers to a pair {(βG
t ,W

G
t )}t≤T satisfying both

contractual constraints (PKG) and (TIC). In particular, for a given termination time T > 0,

the constrained optimal incentive scheme I∗
T is the solution to the following constrained

15See, for example, Fernandes and Phelan (2000) for an earlier discussion of this issue.
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optimization problem:

max
(βG,WG)

s.t. (PKG),(TIC)

[
π0

∫ T

0
exp(−(r + λ)τ)

(
λV (WG

τ + βG
τ )− i

)
dτ − (1− π0)

(
1− exp(−rT )

r

)
i

]
,

(12)

where the termination time T > 0 is taken as exogenously fixed in Subprogram (12).

4 Derivation of Optimal Contract

In Section 4, we solve for the optimal contract, and show that the temporary incentive

compatibility constraint may not necessarily bind under the optimal contract. Let us outline

how we plan to proceed. In Subsection 4.1, for each termination time T > 0, we analyze the

properties of the benchmark incentive scheme in which the temporary incentive compatibility

constraints bind at all times in the exploration phase. In Subsection 4.2, we show that when

the principal has a downward sloping exploitation value function, the benchmark incentive

scheme considered in Subsection 4.1 is constrained optimal given a termination time T > 0.

In Subsection 4.3, we show that when the principal has an inverted U-shaped exploitation

value function, the temporary incentive compatibility constraint (TIC) may not necessarily

bind at all times under the constrained optimal incentive scheme. Furthermore, we provide

a sufficient condition for which the temporary incentive compatibility constraint never binds

in the exploration phase.

4.1 Incentive Scheme With Binding (TIC)’s

For each termination time T > 0, let IBinding
T := {(βG

t
,WG

t )}t≤T denote the incentive scheme

in which temporary incentive compatibility constraints always bind in the exploration phase,

where

βG
t
:=

c

λπP
t

, WG
t :=

∫ T

t
exp(−r(τ − t))

(
λβG

τ
− c

)
dτ, WS

t := WG
t + βG

t
(13)

for each t ≤ T .

Verbally, when payoffs are evaluated based on the probability measure PG
a , the term βG

t
is the

sensitivity of the agent’s continuation value to success at time t under the incentive scheme

IBinding
T , whereas WG

t is the agent’s continuation value after failure up to and including time

t under the incentive scheme IBinding
T . Also, WS

t represents the agent’s exploitation utility

upon success at time t under the incentive scheme IBinding
T . While the variables in (13) (i.e.,

βG
t
,WG

t , and WS
t ) depend on the termination time T, we slightly abuse the notation and
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suppress their dependence on the termination time whenever no confusion arises.

The following lemma characterizes the agent’s continuation utilities induced by the incentive

scheme IBinding
T :

Lemma 3. (1) Under an arbitrary incentive scheme IT with a given termination time T,

the agent’s continuation value WG
t under the probability measure PG

a after failure up

to and including time t is weakly higher than WG
t induced by IBinding

T at any t ≤ T.

Additionally, the agent’s exploitation utility WS
t upon success at time t is weakly higher

than WS
t associated with IBinding

T for any t ≤ T.

(2) The agent’s exploitation utility WS
t associated with the incentive scheme IBinding

T strictly

increases in the timing of success, t.

Proof. In the Appendix.

Lemma 3-(1) asserts that for any given termination time T, continuation payoffs WG
t and

WS
t induced by the incentive scheme IBinding

T impose lower bounds on time-t continuation

payoffs that can be induced by an arbitrary incentive scheme under the probability measure

PG
a . Heuristically, if the principal raises the sensitivity term βG

t of the agent’s continuation

utility under the probability measure PG
a at time t, she must do so by promising a higher

exploitation utility WS
t at time t, which in turn increases the agent’s continuation utilities

prior to time t under the probability measure PG
a . Therefore, slack temporary incentive

compatibility constraints lead to higher “rents” (i.e., WG
t and WS

t ) for the agent under the

probability measure PG
a .

To develop intuition behind Lemma 3-(2), let us decompose WS
t := βG

t
+WG

t into two com-

ponents βG
t
and WG

t . The first component βG
t
reflects the compensation for the agent’s cost

of effort when effort choices are publicly observable. In this first-best case, the principal can

extract full surplus by promising the agent an exploitation utility of βG
t
:= c

λπP
t

upon success

at time t. Since both players grow pessimistic about the likelihood of success with the passage

of time in the exploration phase, the principal must raise the agent’s exploitation utility βG
t

over time to accomodate for the lower chance of success. As a result, the first component βG
t

strictly increases in the timing of success, which in turn leads to the monotonicity of WS
t as

well.

The second component WG
t reflects the agent’s time-t expected information rent arising from

the possibility of belief manipulations when the agent is privately informed of his past effort

choices. In this case, the agent’s shirking can induce the principal to become more pessimistic

16



than the agent in the future. Thus, under the first-best continuation plan {βG
t
}t≤T in the

exploitation phase, the agent can expect to earn information rents by exerting effort only

when the exploitation utility level becomes sufficiently high, so he does not find it optimal

to exert effort at all times until termination. Therefore, in order to incentivize the agent,

the principal must promise him an additional exploitation utility WG
t upon success at time

t.

Remark 2. If the project can potentially succeed even without the agent’s effort, the agent’s

time-t exploitation utility WS
t induced by binding temporary incentive compatibility constraints

until a given termination time T does not necessarily increase over time. Intuitively, under

this alternative specification, the agent can obtain moral hazard rents at each time even in

absence of learning (i.e., π0 = 1). Therefore, in order to incentivize the agent far from

termination time T, the agent’s continuation utility WG
t tends to drop faster near the termi-

nation time T , which may give rise to the non-monotonicity of the exploitation utility WS
t

induced by binding temporary incentive compatibility constraints until the termination time T .

4.2 Case 1: Model With Downward Sloping V (·)

In Section 4.2, we consider the case in which the principal has a downward sloping exploitation

value function (as illustrated in Figure-1-(a)).

Definition 1. The principal’s exploitation value function V (·) is downward sloping if it

strictly decreases in the agent’s exploitation utility: V ′(w) < 0 for any w ∈ R+.

Definition 1 generalizes a salient property of the principal’s exploitation value function in

existing contracting models with exponential bandits (Bergemann and Hege, 1998, 2005;

Hörner and Samuelson, 2013; Halac et al., 2016). In these works, project success generates a

fixed surplus, which is subsequently shared between two players based on the initial contract.

Therefore, the principal earns a strictly lower exploitation profit if she promises the agent a

larger exploitation utility upon success.

The next lemma shows that when the exploitation value function is assumed to be downward

sloping, the temporary incentive compatibility constraint (TIC) must bind throughout the

exploration phase under the constrained optimal contract:

Lemma 4. If the principal’s exploitation value function is downward sloping, for each ter-

mination time T > 0, the incentive scheme IBinding
T with binding temporary incentive com-

patibility constraints is constrained optimal.
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Proof. In the Appendix.

The intuition behind the lemma is as follows. If the principal has a downward sloping

exploitation value function and promises a strictly higher exploitation utility upon success at

time t, she must earn a strictly lower exploitation profit upon success at time t. Accordingly,

the principal finds it optimal to implement the incentive scheme IBinding
T , which delivers the

agent the minimal exploitation utility required to induce him to exert effort at any given time

by Lemma 3-(1).

The next proposition summarizes the main results of Section 4.2:

Proposition 1. Suppose that the principal’s exploitation value function is downward sloping.

Then, for any given termination time T > 0, the temporary incentive compatibility constraints

bind throughout the exploration phase under the constrained optimal incentive scheme. Addi-

tionally, the agent’s exploitation utility WS
t in (13) strictly increases in the timing of success,

t.

Proof. Immediate from Lemmata 3-(2) and 4.

4.3 Case 2: Model With Inverted U-Shaped V (·)

In Section 4.3, we show that when the principal has an inverted U-shaped exploitation value

function (as illustrated in Figure-1-(b)), the temporary incentive compatibility constraint

(TIC) may not necessarily always bind at all times in the optimal contract.

Definition 2. The principal’s exploitation value function V (·) is inverted U-shaped if its

unique maximizer W ∗ is strictly higher than the principal’s reservation payoff: W ∗ > 0.

By the regularity Assumption 0, it is straightforward to see that an inverted U-shaped ex-

ploitation value function is strictly increasing on [0,W ∗] and strictly decreasing on [W ∗,∞).

This shape can be motivated by appealing to prior works on dynamic moral hazard (Quadrini,

2004; Clementi and Hopenhayn, 2006; DeMarzo and Sannikov, 2006; DeMarzo and Fishman,

2007a,b; Vereshchagina and Hopenhayn, 2009; DeMarzo et al., 2012; Fuchs et al., 2022).

The rest of Section 4.3 is organized as follows. First, in 4.3.1, we derive the general form

of the constrained optimal incentive scheme for any given termination time T > 0, under

which temporary incentive compatibility constraints may not necessarily bind at all times in

the exploration phase. Second, in 4.3.2, we identify sufficient conditions for which temporary

incentive compatibility constraints never bind under the optimal contract.16

16Recall from the definitions in Subsection 3.3 that a “constrained optimal incentive scheme” are not mu-
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4.3.1 Constrained Optimal Incentive Scheme

Let us derive the general form of the constrained optimal incentive scheme for a given ter-

mination time T > 0, under which temporary incentive compatibility constraints may not

necessarily bind at all times in the exploration phase. Given a termination time T > 0, our

candidate for the constrained optimal incentive scheme is denoted as I∗
T , under which the

agent expects to earn the following exploitation utility upon success at time t:

WS∗
t := max{W ∗,WS

t }. (14)

Figure 2 shows the time trajectories of the optimal exploitation utility WS∗
t under hidden

effort, the minimal exploitation utility WS
t induced by the incentive scheme IBinding

T , and the

exploitation utility c
λπP

t
under observable effort.

t

E
x
p
lo
it
at
io
n
U
ti
li
ty

WS∗
t

WS
t

c
λπP

t

Figure 2: Time Trajectories of WS∗
t and WS

t

Based on the exploitation utility given in (14), the time-t contracting variables βG∗
t and

WG∗
t associated with the candidate optimal incentive scheme I∗

T can be computed as follows:

WG∗
t =

∫ T

t
exp(−(r + λ)(τ − t))(λWS∗

τ − c)dτ, βG∗
t = WS∗

t −WG∗
t (15)

for each t ≤ T . Note that the first equality follows from the definition given in (3) and the

front-loaded nature of the principal’s effort recommendation, whereas the second equality

follows from the second line of the promise-keeping constraint (PKG) under the probability

measure PG
a .

tually exchangeble with an “optimal contract,” under which the termination time is also optimally chosen.
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As a preliminary step, the next lemma shows that our candidate for the constrained optimal

incentive scheme I∗
T is indeed incentive compatible:

Lemma 5. Under the candidate I∗
T for the constrained optimal incentive scheme, the tem-

porary incentive compatibility constraint is slack at any time t with WS
t < W ∗, and binds at

all other times prior to termination.

Proof. In the Appendix.

Intuitively, if the principal promises a higher exploitation utility at time t than the minimal

possible level WS
t and fixes the level of the agent’s exploitation utility for a positive duration

of time, the agent finds it less attractive to wait for the exploitation utility to go up at time

t. As a result, he has a stronger incentive to exert effort at time t.

In the next proposition, we verify our conjecture that the incentive scheme I∗
T is indeed

constrained optimal:

Proposition 2. For each termination time T > 0, there exists a constrained optimal incentive

scheme I∗
T as defined by the agent’s time-t exploitation utility in (14). Under the constrained

optimal incentive scheme, the temporary incentive compatibility constraint is slack at time t

if and only if WS
t < W ∗ at time t.

Proof. In the Appendix.

The heuristic argument for Proposition 2 is as follows. First, if WS
t < W ∗ at time t as in

Panel (a) of Figure 3, the incentive scheme I∗
T delivers the principal her maximal exploitation

profit V (W ∗) at time t, so no other incentive scheme can deliver a strictly higher exploitation

profit at time t than I∗
T does. Moreover, since the principal promises strictly more than the

level required to motivate the agent at any such time, Lemma 5 implies that the temporary

incentive compatibility constraint should become slack.

Second, let us suppose that WS
t ≥ W ∗ at time t as in Panel (b) of Figure 3. By Lemma

3-(1), the principal must promise the agent weakly more than WS
t upon success at time t

under any incentive scheme. Moreover, by the concavity of the exploitation value function

V (·), it must be strictly decreasing on [W ∗,∞). Therefore, the principal’s exploitation profit

at time t cannot be higher than V (WS
t ), which is the level induced by the candidate for the

constrained optimal incentive scheme I∗
T .
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Figure 3: Two Cases for Proposition 2

4.3.2 Optimal Contract With Never Binding (TIC)’s

Proposition 2 shows that temporary incentive compatibility constraints may not necessarily

bind at all times in the constrained optimal incentive scheme given a termination time T > 0.

However, this still raises the possibility that when the termination time T ∗ is optimally cho-

sen, temporary incentive compatibility constraints might still always bind under the optimal

contract. To address this concern, the next theorem provides sufficient conditions for the ex-

istence of an optimal contract under which the temporary incentive compatibility constraint

never binds:

Theorem 1. Suppose that the principal’s exploitation value function is inverted U-shaped,

and that there exists a belief level π ∈ (0, π0) such that (1) λπV (W ∗) = i, and (2)
(

r
λ+r

)
W ∗ >

c
λπ . Then, there exists an optimal contract in which the temporary incentive compatibility con-

straint never binds throughout the exploration phase. The contractual relationship proceeds as

follows. If the project keeps failing, the relationship terminates as soon as the players’ equi-

librium belief that the project is good reaches π. If the project succeeds prior to termination,

the principal implements her optimal continuation contract in the exploitation phase (i.e., the

one that promises W ∗ to the agent in the exploitation phase) immediately upon success.

Proof. In the Appendix.

To better understand this result, let us consider a class of contracts in which the principal

promises the agent an exploitation utility of W ∗ upon success, regardless of success timing.

Since W ∗ is the unique maximizer of the exploitation value function V (·), if the optimal

contract among this class of contracts happened to be incentive compatible, the principal

would implement this particular contract.
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The first condition λπV (W ∗) = i characterizes the principal’s optimal contract within this

class. In particular, it represents the first-order condition for the termination time, at which

the principal’s marginal gain λπV (W ∗) from experimentation must become equal to the

investment cost i per unit time. 17 Therefore, in our candidate optimal contract, the principal

always promises W ∗ to the agent if the project succeeds before her belief reaches π, and

terminates the relationship otherwise.

The second condition
(

r
λ+r

)
W ∗ > c

λπ ensures the incentive compatibility of this candidate

optimal contract. In particular, the left side of the condition is a lower bound on the sensitivity

of the agent’s continuation value under the probability measure PG
a to success at time t,

assuming that the principal always promises the agent W ∗ upon success. The right side

of the condition represents the upper bound on the minimal sensitivity level necessary to

induce the agent to exert effort at any time prior to terimination. Therefore, the second

condition requires that under the candidate optimal contract, the agent’s continuation value

under the probability measure PG
a must be more sensitive to success than the level required

to motivate the agent prior to termination. In turn, this implies that the temporary incentive

compatibility constraint must be always slack throughout the exploration phase.

5 Two-Step Procedure and Extension

Section 4 shows that in the optimal contract, temporary incentive compatibility constraints

may not necessarily bind at all times in the exploration phase. Therefore, the standard

approach, which is based on the conjecture that temporary incentive compatibility constraints

must bind at all times under the optimal contract, may not necessarily lead to the correct

form of the optimal contract.

The goal of Section 5 is to develop a solution method that characterizes the optimal contract

in a richer model. In particular, Section 5 concerns a setting in which the time-t instantaneous

success rate is given by (λ − ∆λ + ∆λat) × 1{θ=G} with λ > λ − ∆λ ≥ 0. Thus, if Nature

chooses a good project (i.e., θ = G), (1) success rates under the two action choices (i.e., λ and

λ−∆λ) are both weakly positive; (2) effort strictly increases the success rate of the project

(∆λ > 0). Therefore, the model considered up to this point is a special case of this one with

λ = ∆λ.

17In the more general model in which with the principal earns V ≥ 0 upon termination in the exploration
phase, the first-order condition with respect to the termination belief takes the following form:

λπV (W ∗) = i+ rV ,

where rV can be interpreted as the principal’s forgone interest from delaying termination per unit time in the
exploration phase. Hence, as long as either the opportunity cost of operation (i.e., i+ rV ) is strictly positive
in the exploration phase, there exist parametric configurations under which Theorem 1 hold true.
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When λ > ∆λ, the project can potentially succeed even without the agent’s effort. Thus,

even in the absence of learning (i.e., π0 = 1), the agent can enjoy a moral hazard rent prior to

termination due to the unobservability of effort. As shown later in Lemma (8), this implies

that the agent’s exploitation utility induced by binding temporary incentive compatibility

constraints is not necessarily monotone in time, which makes it more challenging to derive

the optimal contract.

In this model, the time-t temporary incentive compatibility constraint (TIC) must be modified

as follows:

βG
t ≥ c

∆λπ
P
t

.

for almost every t ≤ T .

The rest of Section 5 proceeds as follows. In Subsection 5.1, we extend Grossman and Hart

(1983)’s two-step approach to our dynamic environment. More specifically, we break down

the original contracting problem (11) into two subprograms, and apply standard techniques in

optimal control theory to derive the optimality conditions associated with each subprogram.

This more general approach will allow us to handle the case in which the project can succeed

without the agent exerting effort, which we do so in Subsection 5.2.

5.1 Solution Method

Step 1) First, we take a termination time T > 0 as given and solve for the constrained

optimal incentive scheme that induces the agent to exert effort until a given termination time

T > 0. Formally, in particular, for each T > 0, the constrained optimal incentive scheme I∗
T

solves the the following “implementation Subprogram”:

J(T ) := max
(βG,WG) s.t.
(PKG),(TIC)

∫ T

0
λ exp(−(r + λ)τ)V (WG

τ + βG
τ )dτ. (16)

under the probability measure PG
a .

Since Subprogram (16) is a standard optimal control problem, we can apply Pontryagin’s

maximum principle to derive the optimality conditions associated with it. After adjusting for

discounting and uncertainty, we can define the “present-value Lagrangian” associated with

the subprogram as follows:

L (t,WG
t , βG

t , µ
PKG
t , µTIC

t ) := λV (WG
t +βG

t )+µPKG
t

(
rWG

t −λβG
t +c

)
+µTIC

t

(
βG
t − c

∆λπ
P
t

)
,

(17)
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where µPKG
t is the present-value multiplier associated with the promise-keeping constraint

(PKG) under the probability measure PG
a , and µTIC

t is the present-value multiplier associated

with the temporary incentive compatibility constraint (TIC).

In line with pioneering works by Dorfman (1969) and Pontryagin et al. (1962), we shall

interpret the multiplier µPKG
t as the principal’s present-value shadow cost from delivering an

additional continuation value to the agent under the probability measure PG
a at time t ≤ T .

Similarly, the multiplier µTIC
t shall be interpreted as the principal’s present-value shadow

value of relaxing the temporary incentive compatibility constraint by a single “payoff unit”

at time t ≤ T , when the players’ expected discounted payoffs are evaluated on the basis of

the probability measure PG
a .

Note that the exploitation value function V (·) is concave with respect to WG
t , and the “con-

straint functions” (i.e., rWG
t − λβG

t + c and βG
t − c

∆λπ
P
t−
) are both linear with respect to WG

t

and βG
t . Therefore, the following lemma characterizes necessary and sufficient conditions for

the solution to the implementation Subprogram:

Lemma 6. The incentive scheme (βG∗,WG∗) solves Subprogram (16) if and only if there

exists a pair of multiplier processes (µPKG*, µTIC*) = {µPKG*
t , µTIC*

t }t≤T satisfying the fol-

lowing conditions at all t ≤ T,

λ
(
V ′(WG∗

t + βG∗
t )− µPKG*

t

)
+ µTIC*

t︸ ︷︷ ︸
=:

∂L (t,WG∗
t ,βG∗

t ,µPKG*
t ,µTIC*

t )

∂βGt

= 0. (FOC)

− ∂µPKG*
t

∂t
= λ

(
V ′(WG∗

t + βG∗
t )− µPKG*

t

)
︸ ︷︷ ︸

=:
∂L (t,WG∗

t ,βG∗
t ,µPKG*

t ,µTIC*
t )

∂WG
t

−(λ+r)µPKG*
t

. (CE)

µPKG*
0 ≤ 0, µPKG*

0

(
WG∗

0 −WG
0

)
= 0. (CSC1)

µTIC*
t ≥ 0, µTIC*

t

(
βG∗
t − c

∆λπ
P
t

)
= 0, (CSC2)

where WG
0 :=

∫ T
0 exp(−rτ)

(
λ( c

∆λπP
τ
)− c

)
dτ denotes the minimal level of the agent’s time-0

payoff under an incentive scheme, evaluated based on the probability measure PG
a . Moreover,

if the exploitation value function V (·) is strictly concave, the constrained optimal incentive

scheme yields the unique maximum of the implementation Subprogram (16).

Proof. In the Appendix.
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The first requirement given by (FOC) is the Kuhn-Tucker first-order condition associated

with the Lagrangian (17). It states that for any t ≤ T, the sensitivity βG
t of the agent’s

continuation value at time t under the probability measure PG
a must be chosen so that the

principal’s marginal benefit from increasing βG
t must be equal to her marginal cost from doing

so. As a result, the sum of the marginal change in the principal’s value at time t with respect

to βG
t and the shadow value from relaxing the temporary incentive compatibility constraint

at time t must be equal to the shadow cost from delivering an additional utility to the agent

under the probability measure PG
a at time t.18

The requirement given by (CE) is called the co-state equation associated with the multiplier

µPKG*
t . In particular, it states that for any t ≤ T, the decrease in the agent’s equilibrium

time-t continuation utility per unit time under the probability measure PG
a must be equal to

the difference between the marginal change in the principal’s value with respect to WG
t at

time t and the shadow cost from delivering the agent an additional utility at time t under

the probability measure PG
a .

The complementary slackness condition associated with the time-0 multiplier µPKG*
0 (CSC1)

asserts that the principal’s shadow value µPKG*
0 from increasing the agent’s expected dis-

counted payoff at time 0 under the probability measure PG
a must be weakly negative, and can

be strictly negative only if the principal promises the minimal time-0 expected payoff WG
0

required to incentivize the agent under the probability measure PG
a .

Similarly, the complementary slackness condition associated with the time-t multiplier µTIC*
t

(CSC2) asserts that for any t ≤ T , the shadow cost from the temporary incentive compatibility

constraint at time t must be weakly positive, and can be strictly positive only if the constraint

binds under the optimal contract.

The next lemma shows that it entails no loss of generality to assume that µPKG*
0 = 0:

Lemma 7. Suppose that there exists an optimal quadruple (βG∗,WG∗, µPKG*, µTIC*) sat-

isfying conditions (PKG), (TIC), (FOC), (CE), (CSC1), and (CSC2). Then, there exists

a pair of multiplier processes (µ̃PKG*, µ̃TIC*) such that 1) µ̃PKG∗
0 = 0; 2) the quadruple

(βG∗,WG∗, µ̃PKG*, µ̃TIC*) satisfies conditions (PKG), (TIC), (FOC), (CE), (CSC1), and

(CSC2).

Proof. In the Appendix.

18In most papers in the continuous-time contracting literature (Sannikov, 2008; Biais et al., 2010), the
optimal contract can be obtained by minimizing the sensitivity term βG

t at any time prior to termination.
However, this property does not hold true in our model because the intermediate breakthrough changes the
nature of payoff structure.
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Heuristically, if the the multiplier µPKG∗
0 < 0, then the complementary slackness constraint

in (CSC1) implies that WG∗
0 = WG

0 . A straightforward generalization of Lemma 3-(1) shows

that WG∗
0 = WG

0 is equivalent to the temporary incentive compatibility constraint binding

at all t ≤ T . Therefore, the inequality WG∗
0 ≥ WG

0 can be treated as a redundant constraint

and thus can be dropped, which allows us to set the Lagrange multiplier µPKG*
0 = 0 without

loss of generality.

When coupled together with Lemma 7, the Kuhn-Tucker optimality conditions characterized

in Lemma 6 can be simplified as follows:

Proposition 3. The incentive scheme (βG∗,WG∗) solves Subprogram (16) if and only if for

all t ≤ T,

−λV ′(WG∗
t + βG∗

t )−
∫ t

0
exp(−λ(τ − t))λ2V ′(WG∗

τ + βG∗
τ )dτ︸ ︷︷ ︸

=µTIC*
t

≥ 0, (18)

whose left-hand side µTIC*
t must be equal to zero for any time t at which the temporary

incentive compatibility constraint is slack. Moreover, if the exploitation value function V (·)
is strictly concave, the constrained optimal incentive scheme yields the unique maximum of

the implementation Subprogram (16).

Proof. In the Appendix.

Step 2) The second step is to choose the optimal termination time T ∗ in the following

problem:

max
T≥0

[
π0

{
J(T )−

(1− exp(−(r + λ)T )

r + λ

)
i
}
− (1− π0)

(1− exp(−rT )

r

)
i

]
, (19)

where J(T ) is the principal’s value function associated with the implementation Subprogram

(16). We may apply the “dynamic envelope theorem” to obtain the following equations:19

J ′(T ) = exp(−(r + λ)T )L (T,WG∗
T︸ ︷︷ ︸

=0

, βG∗
T , µPKG*

T , µTIC*
T )

= exp(−(r + λ)T )
(
λV (βG∗

T )− µPKG*
T (λβG∗

T − c)
) (20)

for each T ≥ 0, where µPKG*
T is the time-T multiplier associated with the constrained optimal

19See, for example, Theorem 9.3 pp. 252 Foundations of Dynamic Economic Analysis Optimal Control
Theory and Applications by Caputo (2005).
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incentive scheme that induces the agent to exert effort until termination time T .

This result has an intuitive interpretation. By marginally increasing the duration of exper-

imentation, the principal can expect to earn an additional profit of λV (βG∗
T ) at time T but

must also bear the extra shadow cost from delivering an additional flow utility of λβG∗
T − c

to the agent at time T, when the players’ continuation payoffs are evaluated on the basis of

the probability measure PG
a .

Taken together with the dynamic envelope result above, differentiation of the objective func-

tion with respect to termination time T in the optimization program (11) yields the following

first-order condition:

λπP
T ∗V (βG∗

T ∗ )− i = πP
T ∗µPKG*

T ∗ (λβG∗
T ∗ − c), (21)

which must be satisfied as long as the optimal termination time T ∗ is strictly positive. The

left side is the principal’s marginal benefit from experimentation at time T ∗ under fully

observable effort choices, whereas the right side reflects the principal’s shadow cost from

promising the agent an additional rent of λβG∗
T ∗ − c upon success at time T ∗.

5.2 Extension: Model With λ > ∆λ

Up to Section 4, we have assumed that λ = ∆λ, so that the project can succeed at time t

only if the agent exerts effort at time t. In the current Subsection, we instead assume that

λ > ∆λ, so that the project may succeed even if the agent does not exert effort.

5.2.1 Incentive Scheme With Binding TICs

Let us first chracterize the benchmark incentive scheme induced by binding temporary in-

centive compatibility constraints. As in Equation (13), for each termination time T > 0, let

IBinding
T := {(βG

t
,WG

t )}t≤T denote the incentive scheme in which temporary incentive com-

patibility constraints always bind in the exploration phase. The next lemma characterize the

time trajectory of the exploitation utility induced by the incentive scheme IBinding
T :

Lemma 8. Under the incentive scheme IBinding
T , there exists τ ∈ [0, T ) such that the exploita-

tion utility WS
t initially strictly increases in time over [0, τ), and strictly decreases in time

over [τ, T ]. Moreover, for any ϵ > 0, there exists a ∆λ ∈ (0, λ) such that for all ∆λ ∈ (∆λ, λ),

the exploitation utility WS
t initially strictly increases in time over [0, T − ϵ].

Proof. In the Appendix.
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Since τ ∈ [0, T ), the exploitation utility WS
t must eventually decrease in time. Therefore,

the incentive scheme IBinding
T generates one of the following paths: 1) the exploitation utility

WS
t initially strictly increases in time up to τ , and strictly decreases in time afterward; 2)

the exploitation utility WS
t strictly decreases in time.

To better understand the intuition behind Lemma 8, let us decompose the time-t exploitation

utility WS
t under the incentive scheme IBinding

T as follows:

WS
t :=

c

∆λπ
P
t

+

∫ T

t
exp(−r(τ − t))

(
λ

(
c

∆λπ
P
t

)
− c

)
dτ

=
c

∆λπ
P
t︸ ︷︷ ︸

Static Agency Cost

+ c

(
λ−∆λ

∆λ

)(
1− exp(−r(T − t))

r

)
︸ ︷︷ ︸

Intertemporal Agency Cost

,

+ c

(
λ

∆λ

)(
1− πP

t

πP
t

)(
1− exp(−(r − λ)(T − t))

r − λ

)
︸ ︷︷ ︸

Informational Agency Cost

,

(22)

where the second equality follows from direct computations.

In the terminology of Bergemann and Hege (1998), the static agency cost refers to the agent’s

minimal continuation value upon success if the players interact for an infinitesimally short

time. This cost increases in the timing of success. Intuitively, both players become more

pessimistic as the project keeps failing, so the principal may need to raise the exploitation

utility over time in order to compensate the agent for the lower likelihood of success.

The intertemporal agency cost is the expectation of the agent’s all future rents from the

possibility of success, when the players have common knowledge about the profitability of

the project. This cost decreases in the timing of success. When λ > ∆λ, the agent enjoys a

moral hazard rent at each time from the possibility of success even without exerting effort.

Thus, as the time left until termination diminishes, so does the expectation of the agent’s

future rents as well.

Finally, the informational agency cost is the agent’s expected information rent from any

potential divergence in the players’ beliefs. This cost is generally non-monotonic in the

timing of success. Intuitively, when the players’ beliefs πP
t and πA

t are sufficiently close to

1, they update slowly with respect to time. Therefore, at such times, the agent gains little

from creating a difference in the two players’ beliefs. Also, when there is little time left until

termination, the probability of eventual success also becomes small, so the agent’s expected

future gain from any discrepancy in beliefs must approach zero.
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5.2.2 Case 1) Model With Downward Sloping V (·)

For each termination time T > 0, we study the constrained optimal incentive scheme when

the principal’s exploitation value function is assumed to be downward sloping. The following

analog of Lemma 4 holds true when λ > ∆λ:

Lemma 9. If the principal’s exploitation value function is downward sloping, for each ter-

mination time T > 0, the incentive scheme IBinding
T with binding temporary incentive com-

patibility constraints is constrained optimal.

Proof. In the Appendix.20

A heuristic argument is as follows. By hypothesis, the principal’s exploitation profit increases

in the agent’s exploitation utility. Moreover, a straightforward generalization of Lemma 3-(1)

shows that the incentive scheme IBinding
T induces the minimal exploitation utility required to

incentivize the agent throughout the exploration phase. In turn, for a given termination

time T > 0, it is constrained optimal for the principal to implement the incentive scheme

IBinding
T .

5.2.3 Case 2) Model With Inverted U-shaped V (·)

As illustrated in Lemma 8, the exploitation utility WS
t induced by binding temporary in-

centive compatibility constraints is not necessarily monotone in time. Therefore, we use an

alternative way to derive the constrained optimal incentive scheme for a given termination

time T > 0. In particular, for each termination time T > 0, we construct three candidates

for the constrained optimal incentive scheme, and show that one of the candidates must be

constrained optimal.

First Candidate Under the first candidate IType 1
T for the constrained optimal incentive

scheme, the principal always promises the exploitation utility of W ∗ to the agent, if the

project succeeds prior to termination time T > 0. Since W ∗ is the unique maximizer of V (·),
no incentive scheme can deliver a strictly higher time-0 payoff to the principal than this first

candidate IType 1
T . Hence, IType 1

T must be a constrained optimal incentive scheme if and only

if it satisfies the temporary incentive compatibility constraint at every t ≤ T .

Second Candidate In our analysis of the model with λ = ∆λ, we modified the incentive

scheme IBinding
T with binding temporary incentive compatibility constraints so that the time-0

exploitation utility WS∗
0 ≥ W ∗ under the constrained optimal incentive scheme. The next

20We prove both Lemmata 4 and 9 at the same time because the proof of the two Lemmata are effectively
identical.
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lemma suggests that in the model with λ > ∆λ, we need to make similar adjustments to the

incentive scheme IBinding
T to obtain a candidate constrained optimal incentive scheme:

Lemma 10. In any constrained optimal incentive scheme, V ′(WS∗
0 ) ≤ 0. If the temporary

incentive compatibility constraint is slack at time 0 (i.e., µTIC*
0 = 0), V ′(WS∗

0 ) = 0.

Proof. In the Appendix.

To better understand Lemma 10, suppose, to the contrary, that V ′(WS∗
0 ) < 0 in the optimal

contract. If the principal raises the agent’s exploitation utility at time 0, she can obtain a

higher exploitation profit at time 0. This would slacken the temporary incentive constraint

at time 0, and would have no effect on temporary incentive constraints in the future. Hence,

since this contract is improvable, this contradicts the optimality hypothesis.

By Lemma 10, we consider an incentive scheme IType 2
T in which the agent earns the following

time-t exploitation utility:

WS
t :=

W ∗ if t ≤ t,

WS
t if t > t,

(23)

where t denotes the first time at which the exploitation utility WS
t ≥ W ∗ under the original

incentive scheme IBinding
T (if the exploitation utility WS

t < W ∗, set t = ∞). By arguining

similarly as in Lemma 5, it is straightforward to see that the temporary incentive compatibility

constraint is slack prior to t and binds afterwards.

Third Candidate It is also possible that the first candidate IType 1
T may fail to satisfy

the incentive compatible constraint, and the second candidate IType 2
T is suboptimal. To

see why, suppose that (a) the continuation plan {WS
t }t≤T in the exploitation phase induced

by IType 2
T is strictly decreasing over time as in Panel (a) of Figure 4; (b) the principal’s

exploitation value function V (·) increases steeply over [0,W ∗] and decreases gradually over

[W ∗,∞) with WS
T < W ∗ < WS

0 , as in Panel (b) of Figure 4.

Under these assumptions, it is not incentive compatible for the agent to exert effort under

the first candidate IType 1
T . By Lemma 3-(1), it is straightforward to show that the agent’s

exploitation utility under any incentive incentive scheme must exceed WS
0 . However, since

the agent only earns W ∗(< WS
0 ) upon success at time 0, it cannot be sequentially rational

for the agent to exert effort at time 0. Therefore, the first candidate IType 1
T cannot be a

constrained optimal incentive scheme.

Moreover, the incentive scheme IType 2
T is suboptimal. By hypothesis, the principal’s ex-
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Figure 4: Case Where Neither IType 1
T nor IType 2

T is Constrained Optimal

ploitation value function increases steeply over [0,W ∗] and decreases gradually over [W ∗,∞).

Thus, as shown in Panel (b) of Figure 4, the principal’s exploitation profit can become very

low near the termination time T under the incentive scheme IType 2
T . Therefore, the principal

can instead modify the incentive scheme IType 2
T so that the temporary incentive compati-

bility constraint binds in the earlier part of the exploration phase, and is slack in the later

part of the exploration phase. By doing so, the principal bears a relatively small cost from

promising the agent an additional exploitation utility in the earlier part of the exploration

phase, and reduces the cost in the later part of the exploration phase.

This case suggests that the principal can potentially benefit from further slackening the

temporary incentive compatibility constraints. The next lemma shows that the temporary

incentive compatibility constraint can be slack only if the principal can weakly gain from
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delivering additional exploitation utility to the agent:

Lemma 11. In any optimal contract, V ′(WS∗
t ) ≥ 0 for any time t at which the temporary

incentive compatibility constraint is slack.

Proof. In the Appendix.

To see why Lemma 11 holds true, suppose, to the contrary, that the temporary incentive com-

patibility constraint is slack at some t with V ′(WS∗
t ) < 0 under the optimal incentive scheme.

If the principal reduces the time-t exploitation utility WS∗
t by ϵ > 0, the agent still has a

sufficient incentive to exert effort at time t. Furthermore, the agent becomes more motivated

to exert effort prior to time t because reducing the time-t exploitation utility makes it less

attractive for the agent to wait until time t. Therefore, all the temporary incentive compati-

bility constraints are satisfied under this modified incentive scheme. However, the incentive

scheme makes the principal strictly better off without violating the incentive compatibility

condition, which contradicts the optimality hypothesis.

In the next proposition, we construct a constrained optimal incentive scheme for the case in

which neither the incentive scheme IType 1
T nor IType 2

T is constrained optimal:

Proposition 4. Suppose that (a) the principal’s exploitation value function is inverted U-

shaped, and (b) neither the incentive scheme IType 1
T nor IType 2

T is a constrained optimal

incentive scheme. Then, there exists a constrained optimal incentive scheme IType 3
T such that

for some time pair (t, t) with 0 ≤ t < t < T, the temporary incentive compatibility constraint

binds over [t, t] and is slack in [0, t)∪ (t, T ]. Furthermore, there exists a wslack ∈ ( c
∆λπ

P
T

,W ∗)

such that in the constrained optimal incentive scheme IType 3
T , the agent’s exploitation utility

WS∗
t = wslack for all t ∈ [t, T ].

Proof. In the Appendix.

In the constrained optimal incentive scheme in Proposition 4, the temporary incentive con-

straint binds for a positive duration of time, and becomes slack in the later part of the

exploration phase. Moreover, if the temporary incentive constraint is slack prior to time

t > 0 under the incentive scheme, the agent’s time-t exploitation utility under the incentive

scheme must be equal to W ∗ for any t < t.

The next lemma shows how the shape of the principal’s exploitation value function affects

the design of the constrained optimal incentive scheme for a given termination time T > 0.

In particular, when the principal finds it more costly to lower the agent’s exploitation utility
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(i.e., V (·) increases steeper over [0,W ∗), the temporary incentive constraint can be slack for

a longer duration of time near termination:

Proposition 5. Consider two inverted U-shaped exploitation value functions V1, and V2 such

that 1) both are maximized at W ∗, 2) V2 has a strictly higher derivative than V1 on [0,W ∗]

and the same derivative as V1 on [W ∗,∞), and 3) are strictly concave on R+. Suppose

that when the principal’s exploitation value function is V1, there exists t1 > 0 such that the

temporary incentive compatibility constraint binds on [t1 − ϵ, t1] and is slack over (t1, T ] in a

constrained optimal incentive scheme. Then, when the principal’s exploitation value function

is V2, the constrained optimal incentive scheme under V1 is no longer constrained optimal,

and there exists t2 ∈ (0, t1) such that the temporary incentive compatibility constraint is slack

on [t2, T ] in a constrained optimal incentive scheme.

Proof. In the Appendix.

6 Discussion

6.1 Implication For Termination Time

Let us explore how the shape of the principal’s exploitation value function affects her opti-

mal termination time. The next proposition shows that even if an inverted U-shaped value

function is strictly lower than a downward-sloping value function at every point, the inverted

U-shaped value function can still induce a longer termination time in the optimal contract

than the downward sloping value function:

Proposition 6. Suppose that when the principal’s exploitation value function is given by

VD(W
S
t ) = y−WS

t for some y > 0, it is optimal to terminate the relationship at time T ∗
D > 0

in the exploration phase. Then, there exists an inverted U-shaped exploitation value function

VI such that 1) VI(W
S
t ) < VD(W

S
t ) = y −WS

t at every WS
t ≥ 0, and 2) when the principal’s

exploitation value function is given by VI(W
S
t ), it is optimal to terminate the relationship at

time T ∗
I > T ∗

D in the exploration phase.

Proof. In the Appendix.

The intuition behind this unexpected result is as follows. When the principal increases

termination time, the agent can potentially gain more from creating a divergence between

the two players’ belief, so the principal tends to bear an extra shadow cost from delivering a

higher exploitation utility to the agent. If the principal has a downward sloping exploitation

value function, the shadow cost is strictly positive because she finds it costly to deliver an
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additional exploitation utility to the agent. The positive shadow cost depresses her benefit

from implementing a longer termination time, so the principal has an incentive to prematurely

terminate the relationship.

By contrast, if the principal’s exploitation value function is inverted U-shaped, she finds

it less costly to deliver an additional utility to the agent. In turn, the principal incurs a

lower shadow cost from delivering a higher exploitation utility to the agent, which reduces

her incentive to prematurely terminate the relationship. Therefore, even when the principal

earns a strictly lower exploitation profit at any exploitation utility promised to the agent, an

inverted U-shaped exploitation value function often induces a longer termination time than

a downward sloping value function.

6.2 Optimal Contract in Absence of Learning

Learning is a natural feature of many real-world applications of multi-stage projects (e.g.,

venture capital), so we have assumed that the players are initially uncertain of project prof-

itability (i.e., π0 ∈ (0, 1)). Yet, more generally, our model can be thought of as a model with

two phases, and the role played by the payoff structure in the second phase may be more

critical than the one played by learning in the first phase. To explore this possibility, let us

consider a model in which the players are no longer uncertain about profitability in the first

phase.

Lemma 12. Suppose that 1) both players are initially certain that the project is good in the

first phase (i.e., π0 = 1), and 2) W ∗ is the unique maximizer of the value function V (·) in

the second phase. Then, in the optimal contract, the relationship is never terminated in the

exploration phase, and the principal delivers the exploitation utility max{ c
λ ,W

∗} to the agent

upon the breakthrough.

Proof. In the Appendix.

Lemma 12 shows that the temporary incentive compatibility constraint may be slack under

the optimal contract, even in the absence of learning. In particular, when the principal’s value

function in the second phase is inverted U-shaped with a sufficiently large maximizer W ∗, the

temporary incentive compatibility constraint is always slack throughout the first phase. In

contrast, when the principal’s value function in the second phase is downward sloping (i.e.,

W ∗ = 0), the temporary incentive compatibility constraint must bind at all times in the first

phase.

Nevertheless, one important difference is that without learning, the relationship is never
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terminated in the first phase. Therefore, the model without learning cannot speak to the

duration of experimentation in the first phase.

7 Conclusion

This paper examines a dynamic moral hazard problem involving an initial exploration phase

followed by an exploitation phase, which allows us to integrate the experimentation literature

with the dynamic corporate finance literature. Our findings highlight how the shape of the

exploitation value function can determine optimal contract design and overall welfare. With

a downward-sloping exploitation value function, the temporary incentive constraints must

always bind, leading to additional efficiency losses from under-experimentation. In contrast,

when the principal’s exploitation value function is inverted U-shaped, the agent’s temporary

incentive compatibility constraints may become slack during the exploration phase in the

optimal contract. This relaxation may occur over the entire exploration phase, and may

reduce inefficiencies from under-experimentation. Surprisingly, even when the principal’s

attainable profits are lower with an inverted U-shaped value function, the principal may still

induce more experimentation than when she has a downward sloping value function.

One fruitful extension is to consider a setting in which a bad project can potentially succeed

with strictly positive probability. In such a model, the first success does not fully reveal the

profitability of the project, and the players’ equilibrium posterior belief about profitability

keeps updating indefinitely. Therefore, solving this model is likely to involve keeping track of

the equilibrium posterior belief as an additional state variable, which considerably complicates

the analysis. Furthermore, there would no longer be a distinction between the exploration

phase and the exploitation phase, which is the focus of this paper. That being said, we believe

that many of our qualitative conclusions will continue to hold in this extension. We leave for

future research to verify this conjecture.
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Appendix

Proof for Lemma 2. Consider an alternative strategy â := {ât}t≥0 such that the agent may

potentially deviate from the original effort recommendation up to time t̂ ∧ τ (i.e., for some

t ∈ [0, t̂ ∧ τ ], ât may potentially differ from at = 1), and exerts effort afterward in the

exploration phase, i.e., ât = 1 for all t ∈ [t̂ ∧ τ, T ]. Let π̂A
t denote the agent’s posterior belief

at time t that θ = G induced by the strategy â.

Holding the project type fixed at θ ∈ {G,B} and the agent’s strategy fixed at its equilibrium

level a after time t̂, the past history of the agent’s deviation has no impact on the probability

distribution over the future play after time t̂. Therefore, the agent’s continuation utility

from the alternative action strategy â up to and including time t̂, and switching back to the

original recommendation after time t can be written as:

Ŵt̂(Γ, â) = π̂A
t̂
WG

t̂
(Γ, a) + (1− π̂A

t̂
)WB

t̂
(Γ, a), (24)

where WB
t (Γ, a) := c

(
1−exp(−r(T−t))

r

)
is the agent’s equilibrium continuation value at time t

in case Nature chooses a bad project (θ = B), for any t ≤ T . Also, the time-t̂ expectation of

the agent’s lifetime discounted payoff under the strategy â can be expressed as:

Ût̂(Γ, â) = −
∫ t̂∧τ

0
exp(−rs)câsds+ exp(−r(t̂ ∧ τ))Ŵt̂∧τ (Γ, a). (25)

Similarly, let πA
t denote the agent’s posterior belief at time t that θ = G induced by the

recommended strategy a. Then, the time-t̂ expectation of the agent’s equilibrium lifetime

discounted payoff can be expressed as:

Ut̂(Γ, a) = −
∫ t̂∧τ

0
exp(−rs)câsds+ exp(−r(t̂ ∧ τ))Wt̂∧τ (Γ, a).

where Wt(Γ, a) := πA
t W

G
t (Γ, a)+ (1−πA

t )W
B
t (Γ, a) represents the agent’s time-t equilibrium

continuation value for each t ≤ T . Furthermore, by Equation (24) and Lemma 1, we can

show:

Ut̂(Γ, a) = U0(Γ, a) +

∫ t̂∧τ

0
exp(−rs)(βG

s +WG
s− −Ws−)

{
dNs − Λsπ

P
s ds

}
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Hence, the posterior lifetime discounted payoff given in (25) can be rewritten as:

Ût̂(Γ, â) =

∫ t̂

0
exp(−rs)c{as − âs}ds+ exp(−rt̂)

(
Ŵt̂(Γ, a)−Wt̂(Γ, a)

)
︸ ︷︷ ︸

=Ût̂(Γ,â)−Ut̂(Γ,a) by Equation (3)

+U0(Γ, a) +

∫ t̂

0
exp(−rs)(βG

s +WG
s− −Ws−)

{
dNs − λπP

s ds
}

︸ ︷︷ ︸
=Ut̂(Γ,a)

(26)

whenever t̂ ≤ τ. Furthermore, we can show

exp(−r(t̂ ∧ τ))
(
Ŵt̂∧τ (Γ, a)−Wt̂∧τ (Γ, a)

)
=

∫ t̂∧τ

0
exp(−rs)

{(
Λs(π

P
s− − π̂A

s−)β
G
s − Λ̂sπ̂

A
s−(W

G
s− − Ŵs−) + Λsπ

P
s−(W

G
s− −Ws−)

)
ds

+ (Ws− − Ŵs−)dNs

}
,

(27)

where Wt− := πP
t−W

G
t− + (1− πP

t−)W
B
t− , and Ŵt− := π̂A

t−W
G
t− + (1− π̂A

t−)W
B
t− without a slight

abuse of notation. The equality follows from Ito’s product rule for point processes, the

definitions of Wt and Ŵt, and the laws of motion of πP
t and π̂A

t .

By the law of iterated expectations (henceforth “LIE”), the agent expects to earn the following

lifetime discounted value under the alternative strategy profile â:21

Û0(Γ, â) =︸︷︷︸
“LIE”

Eâ

(
Ût̂(Γ, â)

)
=U0(Γ, a) + Eâ

(∫ t̂∧τ

0
exp(−rs)(βG

s +WG
s− − Ŵs−)

{
dNs − Λ̂sπ̂

A
s−ds

})
︸ ︷︷ ︸

(∗)

+Eâ

(∫ t̂∧τ

0
exp(−rs)

(
λπ̂A

s−β
G
s − c

)
(âs − as)ds

)
,

where the second equality follows from equations derived in (26) and (27). Since the process

{βG
t +WG

t− −Ŵt−}t≥0 is F -predictable and the compensated process {Nt−
∫ t
0 Λ̂sds}t≥t0 is an

F -martingale under the probability measure Pâ and has zero mean, the optional sampling

theorem implies that the underbraced expression (∗) is equal to zero. Hence,

Û0(Γ, â) = U0(Γ, a) + Eâ

(∫ t̂∧τ

0
exp(−rs)

(
λπ̂A

s−β
G
s − c

)
(âs − as)ds

)
. (28)

21Here, we make use the following fact: for any stochastic process such that Xt = Xτ for some t > τ, we
can write Xt = X0 +

∫ t∧τ

0
dXs for all t ≥ 0.

40



Suppose that πP
t−β

G
t ≥ c

∆λ
for almost every t ≤ τ . Since the original effort recommendation

is front-loaded, the agent is weakly more optimistic than the principal (i.e., πA
t ≥ πP

t ) after

any private history. This implies that for almost every t ≤ τ , π̂A
t−β

G
t ≥ c

∆λ
after any private

history that can be supported under the probability measure Pâ induced by the alternative

strategy profile â. Hence, for almost every t ≤ τ, the integrand with respect to Lebesgue

measure in the last line of (28) is weakly negative Pâ-almost surely. By the optional sampling

theorem, the expectation with respect to Pâ in the last line of (28) is weakly negative. Since

our choice of t̂, and the agent’s alternative action strategy was arbitrary, it must be incentive

compatible for the agent to exert effort prior to termination after any private history. This

establishes sufficiency.

Alternatively, suppose that there is strictly positive probability that πP
t−β

G
t < c

∆λ
for some

t ≤ τ on a time set of positive Lebesgue measure. We shall construct an alternative strategy

profile â so that the integrand inside the expectation in the second line of (28) is strictly

positive with strictly positive probability and nonnegative almost surely under the measure

Pa induced by the equilibrium strategy a.

Choose t̂ to be any time at which there is strictly positive probability Pa that πP
t−β

G
t < c

λ

for some t ∈ [0, t̂] on a set of positive Lebesgue measure. Then, there exists ϵ > 0 such that

πP
t−β

G
t < c

λ − ϵ for some t ∈ [0, t̂] on a set of positive Lebesgue measure with strictly positive

probability under the probability measure Pa. Fix any such ϵ > 0.

For a fixed η > 0, consider an alternative strategy â under which the agent shirks at any

time t ∈ [t̂ − η, t̂] with πP
t−β

G
t < c

λ − ϵ, and exerts effort otherwise. Clearly, for any βG
t , the

function π̂A
t−β

G
t is differentiable with respect to π̂A

t− . The differentiability implies that we

can find a sufficiently small η = η(ϵ) > 0 such that (1) for any t ∈ [0, t̂] with λπ̂A
t−β

G
t ≥ c,

ât = at = 1; (2) there exists a time set of positive Lebesgue measure with λπ̂A
t−β

G
t < c and

ât = 0 ̸= at = 1. Thus, we can show that when η = η(ϵ) > 0 is sufficiently small, the integrand

inside the expectation given in the second line of (28) is strictly positive with strictly positive

probability on a time set of positive Lebesgue measure, and nonnegative almost everywhere

almost surely under the probability measure Pâ induced by the alternative strategy profile â.

This completes the proof.

Proof of Lemma 3. We start by proving the first part (1). For a given termination time T > 0,

fix an arbitrary incentive scheme {(βG
t ,W

G
t )}t≤T that satisfies both Constraints (PKG) and
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(TIC) at any t ≤ T. By the integral expression given in (7), we have:

WG
t :=

∫ T

t
exp(−r(s− t))

(
λβG

s − c
)
ds. ≥︸︷︷︸

(TIC)

∫ T

t
exp(−r(s− t))

(
λβG

s
− c

)
dt︸ ︷︷ ︸

=:WG
t

. (29)

for any t ≤ T. Combining the inequality (29) with the temporary incentive compatibility

constraint (TIC), we have:

WG
t + βG

t︸ ︷︷ ︸
=:WS

t

≥ WG
t + βG

t︸ ︷︷ ︸
=:WS

t

(30)

for any t ≤ T. This completes the proof of the first part (1).

We proceed by proving the second part (2). Taking partial differentiation of WS
t with respect

to time yields:

∂WS
t

∂t
=︸︷︷︸
(13)

∂WG
t

∂t
+

∂βG
t

∂t
= rWG

t − λβG
t
+ c︸ ︷︷ ︸

=
∂WG

t
∂t

by (PKG)

+
(
− λπP

t (1− πP
t )

)
︸ ︷︷ ︸

=
∂πP

t
∂t

by (8)

×
(
− c

λ(πP
t )

2

)
︸ ︷︷ ︸

=
∂βGt
∂πP

t

= rWG
t > 0

(31)

for all t < T, where the equality in the last line follows from direct computations, and the

inequality in the last line follows from the fact that λβG
t

> c and the definition of WG
t in

(13). This completes the proof.

Proof of Lemmata 4 and 9. By Proposition 3, it suffices to check that the following expression

is weakly positive:

µTIC∗
t := −λV ′(WS

t )−
∫ t

0
exp(−λt)λ2V ′(WS

τ )dτ.

Since the principal’s exploitation value function V (·) is downward sloping, it has a strictly

negative derivative everywhere, which implies that µTIC∗
t ≥ 0 for all t ≥ 0. This implies that

the multiplier process pair (µPKG∗, µTIC∗) constructed above satisfy all the Kuhn-Tucker

conditions in Proposition 3, which completes the proof.

Proof of Lemma 5. We first derive alternative expressions for contracting variables associated

with the candidate optimal incentive scheme I∗
T , and analogous expressions associated with

the incentive scheme IBinding
T . Let WG∗

t denote the agent’s time-t continuation utility induced
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by I∗
T , evaluated after failure up to and including time t under the probability measure PG

a .

Also, define βG∗
t to be the sensitivity of the agent’s time-t continuation utility induced by I∗

T ,

when the payoff is evaluated based on the probability measure PG
a . For each t ≤ T, we have:

WG∗
t =

∫ T

t
exp(−(r + λ)(τ − t))(λWS∗

τ − c)dτ, βG∗
t = WS∗

t −WG∗
t . (32)

Note that the first inequality follows from the definition given in (3) and the front-loaded

nature of the effort recommendation, whereas the second equality follows from the promise-

keeping constraint under the probability measure PG
a (6). Arguing similarly, we can obtain

the following expressions for WG
t and βG

t
:

WG
t =

∫ T

t
exp(−(r + λ)(τ − t))

(
λWS

τ − c
)
dτ, βG

t
= WS

t −WG
t . (33)

Let us proceed by showing that the temporary incentive compatibility constraint is slack at

time t whenever WS
t < W ∗. By definition of WS∗

t , we have:

WS∗
t −WS

t = max{W ∗ −WS
t , 0}.

Since the agent’s exploitation utility WS
t strictly increases in time t by Lemma 3-(2), the

difference WS∗
t −WS

t between the agent’s exploitation utilities must be weakly decreasing in

time t. Moreover, we must have:

βG∗
t − βG

t
=(WS∗

t −WS
t )− λ

∫ T

t
exp(−(r + λ)(τ − t))

(
WS∗

τ −WS
τ

)
dτ.

≥(WS∗
t −WS

t )− λ

∫ T

t
exp(−(r + λ)(τ − t))dτ × (WS∗

t −WS
t ).

≥ r

λ+ r
(W ∗ −WS

t ) > 0.

(34)

for any t with WS
t < W ∗. The equality in the first line follows from the difference between βG∗

t

and βG
t
in (32) and (33), whereas the inequality in the second line follows from the fact that

the difference WS∗
t −WS

t is weakly decreasing in time t. The inqualities in the last line follow

from the facts that (1) the integral in the second line is less than
∫∞
t exp(−(r+λ)(τ−t))dτ =

1
r+λ and (2) WS∗

t = W ∗ whenever WS
t < W ∗. The chain of inequalities above show that

βG∗
t > βG

t
:= c

λπP
t
, so the temporary incentive compatibility constraint is slack at time t.

It remains to show that the temporary incentive compatibility constraint is slack at any time

t whenever WS
t ≥ W ∗. By the definition given in (14), WS∗

t = WS∗
t . Furthermore, by

Lemma 3-(2), WS∗
τ = WS

τ for any τ ∈ [t, T ]. Therefore, by (32) and (33), we must have
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βG∗
t = βG

t
:= c

λπP
t
, which completes the proof.

Proof of Proposition 2. Since Lemma 5 shows the slackness of the incentive scheme I∗
T at any

time with WS
t < W ∗, it remains to establish its optimality. It suffices to show that V (WS∗

t ) ≥
V (WS

t ), where W
S
t represents the time-t exploitation utility induced by an arbitrary incentive

scheme for a given termination time T > 0.

Let us consider two cases: 1) WS
t < W ∗; 2) WS

t ≥ W ∗. If WS
t < W ∗, we must have

WS∗
t = W ∗ by construction. Since the value function V (·) is uniquely maximized at W ∗

by hypothesis (Assumption 0-(ii)), we must have V (WS∗
t ) = V (W ∗) ≥ V (WS

t ) in this case.

Alternatively, assume that WS
t ≥ W ∗. Therefore, we must have WS∗

t = WS
t , which represents

the minimal level of the agent’s exploitation utility upon success at time t by Lemma 3-(1).

Moreover, since V (·) is a concave function with a unique maximizer at W ∗ by Assumption

0 and W ∗(≥ WS
t ) by hypothesis, the function V (·) must be downward sloping in [WS

t ,∞).

This implies that the maximizer of V (·) over the set [WS
t ,∞) is WS

t , which completes the

proof of Proposition 2.

Proof of Theorem 1. We begin by proving that the contract described in Theorem 1 yields

the principal a weakly higher payoff than any other incentive-compatible contracts. Consider

a relaxed version (∗) of the implementation subprogram (16) without temporary incentive

compatibility constraints:

max
(βG,WG)
s.t. (PKG)

∫ T

0
λ exp(−(r + λ)τ)V (WG

τ + βG
τ )dτ

︸ ︷︷ ︸
(∗)

=

(
1− exp(−(λ+ r)T )

λ+ r

)
λV (W ∗) ≥ J(T )

for any T ≥ 0. The equality above follows from the fact that W ∗ is the unique maximizer of

V (·) and direct computation, whereas the inequality immediately follows from the fact that

the new subprogram (∗) is a relaxed version of the implementation subprogram in (11).

By the inequality above, the following expression must be weakly greater than the objective

function given in the optimization program (11):

π0

(
1− exp(−(r + λ)T )

r + λ

)(
λV (W ∗)− i

)
− (1− π0)

(1− exp(−rT )

r

)
i (35)

for any given T ≥ 0. Verbally, the expression given in (35) represents the principal’s maximal

expected discounted payoff from a contract (which need not be incentive compatible in the

exploration phase) with termination time T.
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Since the principal’s expected discounted payoff in (11) is strictly concave in termination time

T, we can use the following first-order condition to characterize the optimal termination time

T ∗
Relaxed that maximizes the expected discounted payoff in (11) with respect to T :

λπT ∗
Relaxed

V (W ∗) = i. (36)

The first-order condition above asserts that in the relaxed contracting problem (∗) without

the incentive compatibility constraint, it would be optimal for the principal to terminate the

relationship as soon as her equilibrium belief πP
t that the project is good reaches π. Since

this contract solves the relaxed program (∗), it delivers the principal an expected discounted

payoff weakly higher than any incentive compatible contract. Furthermore, this contract also

coincides with the one described in Proposition 1. This establishes the first part of the proof.

We proceed by verifying that under the contract described in Theorem 1, the temporary

incentive compatibility constraint is always slack throughout the exploration phase. Let us

invoke the definition given in (3) to compute the agent’s time-t continuation utility from this

contract under the probability measure PG
a :

WG
t := EG

a

[
exp(−r(τ − t))W ∗ × 1{τ≤T ∗} − c

∫ τ∧T ∗
Relaxed

t
exp(−r(s− t))ds

∣∣∣∣∣Ft

]
,

=

(
1− exp(−(λ+ r)(T ∗

Relaxed − t)

λ+ r

)
(λW ∗ − c)

(37)

for any t ≤ T ∗
Relaxed.

By the promise-keeping constraint (PKG) under the probability measure PG
a , we can calculate

the sensitivity term βG
t under this contract:

βG
t :=W ∗ −WG

t

=
r

r + λ
W ∗ +

(
λ

λ+ r

)
exp(−(λ+ r)(T ∗

Relaxed − t))W ∗ +

(
1− exp(−(λ+ r)(T ∗

Relaxed − t))

λ+ r

)
c︸ ︷︷ ︸

>0

≥ r

r + λ
W ∗ >

c

λπ
.

for any t ≤ T ∗
Relaxed, where the last inequality follows from the initial hypothesis given in

Theorem 1. The inequality chain above shows that in the contract described in Theorem 1,,

all the temporary incentive compatibility constraints are slack throughout the exploration

phase. This completes the proof.

Proof of Lemma 6. We consider the following auxiliary optimization program with an exoge-

45



nously fixed level of the agent’s time-0 expected discounted utility:

J(w, T ) := max
(βG,WG) s.t.
(PKG),(TIC),

WG
0 =w

∫ T

0
λ exp(−(r + λ)τ)V (WG

τ + βG
τ )dτ. (38)

for each pair of termination time T and the agent’s time-0 expected discounted utility w

under the probability measure PG
a .

As the first step, we solve the auxiliary program (38). Since the exploitation value function

V (·) is concave and the constraint functions are linear in βG
t and WG

t , Mangasarian suffi-

ciency theorem22 implies that the incentive scheme pair (βG∗,WG∗) that satisfies (PKG),

(TIC), WG∗
0 = w solves Subprogram (38) if and only if there exists a pair of multiplier pro-

cesses (µPKG*, µTIC*) = {(µPKG*
t , µTIC*

t )}t≤T satisfying requirements given by (FOC), (CE),

(CSC1), and (CSC2) for a given pair (w, T ).

As the second step, let us optimize over the agent’s time-0 expected discounted payoff w.

By Lemma 3-(1), WG
0 is the infimum of the time-0 expected discounted payoff that can be

promised to the agent, thus implying the additional constraint w ≥ WG
0 . Moreover, since

the exploitation value function V (·) is concave and the constraint set is convex, the function

J(w, T ) derived from (38) must be concave in w. Therefore, the following Kuhn-Tucker con-

ditions are both sufficient and necessary conditions that characterize the optimal level of the

agent’s time-0 expected discounted payoff w∗:

∂J(w∗, T )

∂w
≤ 0,

∂J(w∗, T )

∂w
(w∗ −WG

0 ) = 0

By the dynamic envelope theorem,23 we must have ∂J(w∗,T )
∂w = µPKG*

0 when the latter is

evaluated at w = w∗. Substituting this expression into the Kuhn-Tucker conditions above

establishes (CSC1). If the exploitation value function is assumed to be strictly concave, it also

follows from Mangasarian sufficiency theorem that the solution described above is unique,

which completes the proof.

Proof of Lemma 7. Suppose that there exists an optimal quadruple (βG∗,WG∗, µPKG*, µTIC*)

satisfying conditions (PKG), (TIC), (FOC), (CE), (CSC1), and (CSC2). By Equations

(FOC), and (CE), we have:

µPKG∗
t = exp(λt)µPKG∗

0 −
∫ t

0
exp(−λ(s− t))V ′(WS

s )dt, µTIC∗
t = −λV ′(WS

t ) + λµPKG∗
t .

22See, for example, Theorem 6.2 in Caputo (2005).
23See, for example, Theorem 9.3 in Caputo (2005).
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Define

µ̃PKG∗
t := −

∫ t

0
exp(−λ(s− t))V ′(WS

s )dt

µ̃TIC∗
t := −λV ′(WS

t ) + λµ̃PKG∗
t = µTIC∗

t − λ exp(λt)µPKG∗
0 ≥ 0,

where the last inequality follows µTIC∗
t ≥ 0 and µPKG∗

0 ≤ 0 by complementary slackness

conditions (CSC1) and (CSC2). Straightforward calculations show that µ̃PKG∗
0 = 0, and that

the quadruple (βG∗,WG∗, µ̃PKG*, µ̃TIC*) satisfies all the conditions in (PKG), (TIC), (FOC),

(CE), (CSC1), and (CSC2), which completes the proof.

Proof of Proposition 3 . It is immediate from Lemmata 6 and 7 that the incentive scheme

(βG∗,WG∗) solves Subprogram (16) if and only if there exists a pair of multiplier processes

(µPKG*, µTIC*) = {µPKG*
t , µTIC*

t }t≤T satisfying the following conditions at all t ≤ T,

λ
(
V ′(WG∗

t + βG∗
t )− µPKG*

t

)
+ µTIC*

t = 0.

− ∂µPKG*
t

∂t
= λ

(
V ′(WG∗

t + βG∗
t )− µPKG*

t

)
, µPKG*

0 = 0.

µTIC*
t ≥ 0, µTIC*

t

(
βG∗
t − c

∆λπ
P
t

)
= 0.

(39)

Assume that there exists a pair of multiplier processes (µPKG*, µTIC*) satisfying the three

conditions given by (39). Since the initial value problem described by the co-state equation

in the second line of (39) is a linear differential equation with an initial condition, its solution

µPKG∗
t must be uniquely given by the following expression:

µPKG∗
t := −

∫ t

0
exp(−λ(τ − t))λV ′(WG∗

τ + βG∗
τ )dτ.

for all t ≤ T. Plugging this expression into the Kuhn-Tucker first-order condition (FOC)

shows that

µTIC∗
t = −λV ′(WG∗

t + βG∗
t )−

∫ t

0
exp(−λ(τ − t))λ2V ′(WG∗

τ + βG∗
τ )dτ,

which must be non-negative by the complementary slackness condition (CSC2).

Conversely, assume that µTIC*
t as defined as above is weakly positive for all t ≤ T. It is easy

to check that the multiplier pair process {(µPKG∗
t , µTIC∗

t )}t≤T as defined above satisfies the

three conditions given by (39), which completes the proof.
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Proof of Lemma 8. Taking partial differentiation of WS
t with respect to time yields:

∂WS
t

∂t
=︸︷︷︸
(13)

∂WG
t

∂t
+

∂βG
t

∂t
= rWG

t − λβG
t
+ c︸ ︷︷ ︸

=
∂WG

t
∂t

by (PKG)

+
(
− λπP

t (1− πP
t )

)
︸ ︷︷ ︸

=
∂πP

t
∂t

by (8)

×
(
− c

∆λ(π
P
t )

2

)
︸ ︷︷ ︸

=
∂βGt
∂πP

t

= rWG
t −

(
λ−∆λ

∆λ

)
c,

(40)

where the last equality follows from direct computations. Also, we have:

WG
t :=

∫ T

t
exp(−r(τ − t))

(
λ

(
c

∆λπ
P
t

)
− c

)
dτ,

= c

(
λ

∆λ

)(
1− πP

t

πP
t

)(
1− exp(−(r − λ)(T − t))

r − λ

)
+ c

(
λ−∆λ

∆λ

)(
1− exp(−r(T − t))

r

)
,

(41)

where the equality in the second line also follows from direct computations. After plugging

in the explicit expression for WG
t given in (41) into the last line of (40) and rearranging its

terms as necessary, we can see that
∂WS

t
∂t is positive if and only if:(

exp((r − λ)(T − t))− 1

r − λ

)
−

(
exp(−λT )

r

)(
πP
0

1− πP
0

)(
λ−∆λ

λ

)
> 0 (42)

Since the left hand side is strictly decreasing in t over the entire real line, the derivative
∂WS

t
∂t switches its sign at most once. In addition, as t → T, the first term

(
exp((r−λ)(T−t))−1

r−λ

)
approaches zero, so the left side of the expression above becomes strictly negative. This

implies that for any t sufficiently close to T, the derivative
∂WS

t
∂t is strictly negative. This

completes the first part of the statement.

Moreover, for a given ϵ > 0, whenever ∆λ is sufficiently close to λ, the expression in (42)

is strictly positive, which is equivalent to the fact that the derivative
∂WS

t
∂t must be strictly

positive at t = T − ϵ. Also, since the expression in (42) strictly decreases in t, the derivative
∂WS

t
∂t must be strictly positive at any t ∈ [0, T − ϵ], which completes the proof.

Proof of Lemma 10. Fix any incentive scheme associated for a given termination time T > 0.

Let us show that µPKG*
t ≥ 0 for all t ≤ T. Since µPKG*

0 = 0 by the co-state equation (CE), it

remains to show that µPKG*
t weakly increases over time. By Proposition 3, µPKG*

t must be
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differentiable in time t. Also, the Kuhn-Tucker optimality conditions in Proposition 3 yields

∂µPKG*
t

∂t
=︸︷︷︸

(CE)

λ
(
µPKG*
t − V ′(WG∗

t + βG∗
t )

)
=︸︷︷︸

(FOC)

µTIC*
t ≥︸︷︷︸

(CSC2)

0

at any t ≤ T . Therefore, µPKG*
t weakly increases over time.

By the Kuhn-Tucker first-order condition, we have:

λ
(
µPKG*
t − V ′(WG∗

t + βG∗
t )

)
=︸︷︷︸

(FOC)

µTIC*
t

By hypothesis, µTIC∗
t = 0 whenever the temporary incentive compatibility constraint is slack

at time t. Thus, for any such t, we must have V ′(WG∗
t ) = µPKG∗

t , which was already shown

to be non-negative. This completes the proof.

Proof of Lemma 11. Fix any optimal contract and the incentive scheme associated with it.

By the Kuhn-Tucker first-order condition, we have:

λ
(
µPKG*
t − V ′(WG∗

t + βG∗
t )

)
=︸︷︷︸

(FOC)

µTIC*
t

By hypothesis, µTIC∗
t = 0 whenever the temporary incentive compatibility constraint is slack

at time t. Thus, for any such t, we must have V ′(WG∗
t ) = µPKG∗

t , which was already shown

to be non-negative. This completes the proof.

Proof of Proposition 4. Let us outline the proof of Proposition 4. In Steps 1 and 2, we

construct a family of incentive schemes indexed by the agent’s exploitation utility wslack ∈
( c
∆λπ

P
T

,W ∗). For each incentive scheme, there exists some time t̃ after which the agent’s ex-

ploitation utility stays constant at wslack ∈ ( c
∆λπ

P
T

,W ∗). Moreover, the temporary incentive

compatibility constraint must be slack whenever t ∈ (t̃, T ], and binds at t ∈ (t̃− ϵ, t̃) for some

ϵ > 0. In particular, for each wslack ∈ ( c
∆λπ

P
T

,W ∗), we establish the existence of a unique t̃

satisfying the requirements above. In Step 2, we describe the continuation plan in the ex-

ploitation phase associated with each incentive scheme, and indeed shows that the temporary

incentive compatibility is satisfied at each t ≤ T. Next, in Step 3, we show that under this

family of incentive schemes, the agent’s exploitation utility must continue to weakly decrease

over time once it started decreasing. In Step 4, we rely on the property derived in Step 3

to select a particular incentive scheme as a candidate solution. In Step 5, we establish the

optimality of our candidate solution based on the sufficient and necessary condition described

in Proposition 3.
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Step 1) For each wslack ∈ [ c
∆λπ

P
T

,W ∗], there exists a unique time t(wslack) > 0 such that:

a) there exists ϵ > 0 such that wslack−
(
1−exp(−(λ+r)(T−t))

r+λ

)
(λwslack−c) < c

∆λπ
P
t
for infinitely

many t ∈ [t(wslack)− ϵ, t(wslack)].

b) wslack −
(
1−exp(−(λ+r)(T−t))

r+λ

)
(λwslack − c) ≥ c

∆λπ
P
t

for all t ∈ [t(wslack), T ].

Furthermore, the mapping t : [ c
∆λπ

P
T

,W ∗] → [0, T ] that sends wslack to the unique time

satisfying the conditions above is differentiable and decreasing on [ c
∆λπ

P
T

,W ∗] with t( c
∆λπ

P
T

) =

0.

Define an auxiliary function:

h(t, wslack) := wslack −
(
1− exp(−(λ+ r)(T − t))

r + λ

)
(λwslack − c)− c

∆λπ
P
t

.

Let us first establish uniqueness. Suppose, to the contrary, that there exists a pair (t1, t2)

with t1 < t2 satisfying the properties in Step 1. Then, there exists a small ϵ > 0 such that

h(t2− ϵ, wslack) < 0, which contradicts the fact that h(t2− ϵ, wslack) ≥ 0 by the first property

in Step 1 for time t1.

We proceed by establishing the existence of t(wslack). By construction, h(T,wslack) = wslack−
c

∆λπ
P
T

≥ 0. Also, since the incentive scheme IType 1
T is also not constrained optimal, there

must exist a time t at which the inequality in the next line holds true, so that the incentive

scheme IType 1
T is not incentive compatible:

0 >W ∗ −
(
1− exp(−(λ+ r)(T − t))

r + λ

)
(λW ∗ − c)− c

∆λπ
P
t

.

≥wslack −
(
1− exp(−(λ+ r)(T − t))

r + λ

)
(λwslack − c)− c

∆λπ
P
t

= h(t, wslack)

(43)

where the inequality in the second line follows from the fact that wslack ≤ W ∗ and
(
λ(1−exp(−(λ+r)(T−t)))

r+λ

)
<

1. Hence, for a fixed wslack ∈ [ c
∆λπ

P
T

,W ∗], the set {t : h(t, wslack) < 0} is non-empty with an

upper bound T. It is straightforward to check that the supremum of this set satisfies both

properties (a) and (b) required in Step 1.

Let t(·) denote the function that sends wslack ∈ [ c
∆λπ

P
T

,W ∗] to the supremum of the set

{t : h(t, wslack) < 0}. We wish to prove that the function t(·) is differentiable. Since the

function h(t, wslack) is continuous in both arguments, assuming h(t(wslack), wslack) ̸= 0 leads

to an immediate contradiction to the fact that t(wslack) = sup{t : h(t, wslack) < 0}, so we must

have h(t(wslack), wslack) = 0. Furthermore, suppose, to the contrary, that ∂h(t(wslack),wslack)
∂t =
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0. Direct computations show that

∂2h(t(wslack), wslack)

∂t2
=

∂

∂t

(
∂h(t(wslack), wslack)

∂t

)
=

∂

∂t

(
exp(−(λ+ r)(T − t))(λwslack − c)−

(
1− πP

t

πP
t

)
︸ ︷︷ ︸
=exp(λt)

1−π0
π0

λc

∆λ

)∣∣∣
t=t(wslack)

= λ

(
∂h(t(wslack), wslack)

∂t

)
︸ ︷︷ ︸

=0 by hypothesis

+r exp(−(λ+ r)(T − t)) (λwslack − c)︸ ︷︷ ︸
>0 ∵ wslack ≥ c

∆λπP
T

> 0

Therefore, since ∂h(t(wslack),wslack)
∂t = 0 and ∂2h(t(wslack),wslack)

∂t2
> 0, t(wslack) must be a local

minimizer of h(·, wslack) for a fixed wslack. However, since t(wslack) is the supremum of the

set {t : h(t, wslack) < 0}, for every ϵ > 0, there exists t̃ ∈ [t − ϵ, t] such that h(t̃, wslack) <

0 = h(t(wslack), wslack), which contradicts the fact that t(wslack) must be a local minimizer

of h(·, wslack) for a fixed wslack. Therefore, we must have ∂h(t(wslack),wslack)
∂t ̸= 0 for any

wslack ∈ [ c
∆λπ

P
T

,W ∗]. Thus, we may apply the implicit function theorem to prove that t(·) is
a differentiable function in its domain [ c

∆λπ
P
T

,W ∗]. Furthermore, direct computations yield

h(T, c
∆λπ

P
T

) = 0 and
∂h(T, c

∆λπP
T

)

∂t =
(
λ−∆λ
∆λ

)
c > 0, which implies that t( c

∆λπ
P
T

) = T .

Let us show that the mapping t(·) is a strictly decreasing function. Fix any w1, w2 with
c

∆λπ
P
T

≤ w1 < w2 ≤ W ∗. Then, by the continuity of h(·, ·) in both arguments, h(t(w2), w2) =

0. Moreover, since the function h(t, w) strictly increases in w, we must have h(t(w2), w1) < 0.

Hence, for any t̃ in a sufficiently small neighborhood of t(w2), h(t̃, w1) < 0 by the continuity

of h(·, ·) in both arguments. Then, by the construction of t(·), we must have t(w1) > t(w2)..

This completes the proof of Step 1.

Step 2) For each wslack ∈ [ c
∆λπ

P
T

,W ∗], we construct a candidate for the optimal continuation

plan {WS
t (wslack)}t≤T in the exploitation phase as follows. Then, for each t ∈ [0, T ], define:

(a) For any t ∈ [t(wslack), T ], set W̃
S
t (wslack) = wslack.

(b) For any t < t(wslack), construct W̃
S
t (wslack) so that the temporary incentive compatibility

constraint binds at t :

W̃S
t (wslack) =

c

∆λπ
P
t

+

∫ t(wslack)

t
exp(−r(τ − t))(λ

(
c

∆λπP
τ

)
− c)dτ + exp(−r(t(wslack)− t))W̃G

t̃︸ ︷︷ ︸
=W̃G

t

,

where W̃G
t(wslack)

=
∫ T
t(wslack)

exp(−(r + λ)(τ − t(wslack)))(λwslack − c)dτ is the agent’s time-

t(wslack) continuation value under the probability measure PG
a . By construction, the ex-
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ploitation utility process {W̃S
t (wslack)}t≤T satisfies the temporary incentive compatibility

constraint at any t ≤ T .

(c) If W̃S
0 < W ∗, then define:

WS
t (wslack) :=

W ∗ if t < t(wslack),

W̃S
t if t ≥ t(wslack),

(44)

where t(wslack) denotes the first time at which the exploitation utility W̃S
t ≥ W ∗ under the

original incentive scheme IBinding
T (with t(wslack) := 0 if W̃S

0 ≥ W ∗ ). An argument similar to

the proof of Lemma 5 shows that the exploitation utility process {WS
t (wslack)}t≤T satisfies

the temporary incentive compatibility constraint at any t ≤ T .

Step 3) We claim that for each wslack ∈ ( c
∆λπ

P
T

,W ∗), if
∂WS

t (wslack)
∂t

∣∣∣
t=t̂

< 0 for some t̂ ∈

[t(wslack), t(wslack)], then
∂WS

t (wslack)
∂t < 0 for all t ∈ [t̂, t(wslack)].

Suppose, to the contrary, that there exists wslack ∈ ( c
∆λπ

P
T

,W ∗) such that

∂WS
t (wslack)

∂t

∣∣∣
t=t1

< 0 ≤ ∂WS
t (wslack)

∂t

∣∣∣
t=t2

for some pair (t1, t2) with t1 < t2. It entails no loss of generality to assume that t2 is the first

time at which
∂WS

t (wslack)
∂t becomes weakly positive after time t1. Therefore,

∂WS
t (wslack)

∂t <

0 for all t ∈ (t1, t2). Furthermore, for all t ∈ [t(wslack), t(wslack)], define WG
t (wslack) :=

WS
t (wslack)− c

∆λπ
P
t

to be the agent’s equilibrium continuation value after failure up to time

t, evaluated from the perspective of somebody who knows the project is good. Since c
∆λπ

P
t

strictly increases in t on [t(wslack), t(wslack)], the fact that the exploitation utility WS
t (wslack)

is strictly decreasing on [t1, t2] implies that WG
t (wslack) must be strictly decreasing on [t1, t2].

The same set of computations as in (40) yield:

∂WS
t (wslack)

∂t
= rWG

t (wslack)−
(
λ−∆λ

∆λ

)
c,

for all t ∈ [t(wslack), t(wslack)]. Since
∂WS

t (wslack)
∂t

∣∣∣
t=t1

< 0 ≤ ∂WS
t (wslack)

∂t

∣∣∣
t=t2

by hypothesis,

we must have WG
t1 (wslack) <

(
λ−∆λ
∆λ

)
c
r ≤ WG

t2 (wslack) by the computation above. However,

this contradicts the fact that WG
t strictly decreases on [t1, t2], which completes the proof of

Step 3.

Step 4) For each wslack ∈ [ c
∆λπ

P
T

,W ∗], we also define the candidate multiplier pair associated
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with the solution as follows:

µPKG
t (wslack) :=


exp(−λ(t(wslack)− t))V ′(wslack) +

∫ t(wslack)
t exp(−λ(τ − t))λV ′(WS

τ (wslack))dτ

if t ≤ t(wslack)

V ′(wslack) if t > t(wslack)

µTIC
t (wslack) := −λV ′(WS

t (wslack)) + λµPKG
t (wslack) if t ≤ T.

(45)

Let us show the existence of a w∗
slack ∈ ( c

∆λπ
P
T

,W ∗) such that µPKG
0 (w∗

slack) = 0. In particular,

we first prove that µPKG
0 (W ∗) < 0 and µPKG

0 ( c
∆πP

T

) > 0 and apply the intermediate value

theorem to establish the existence of our desired w∗
slack. Then, we select {WS

t (w
∗
slack)}t≤T as

our candidate for the constrained optimal continuation plan in the exploitation phase.

Let us show that the continuation plan WS
t (W

∗) ≥ W ∗ in the exploitation phase at all t ≤ T .

Suppose, to the contrary that WS
t̂
(W ∗) < W ∗ for some t̂ ≤ T . Since WS

t (W
∗) = W ∗ for all

t ≥ t(W ∗) by definition, t̂ ≤ t(W ∗). Since WS
t(W ∗)

(W ∗) = W ∗ and WS
t̂
(W ∗) < W ∗, the mean-

value theorem implies that there exists t̃ such that
∂WS

t (W ∗)
∂t

∣∣∣
t=t̃

> 0 for some t̃ ∈ [t̂, t(W ∗)],

which in turn implies that
∂WS

t (W ∗)
∂t > 0 for all t ∈ [t(W ∗), t(W ∗)] by Step 3. However,

this is absurd. If t(W ∗) = 0, then the strict monotonicity of WS
t (W

∗) on [t(W ∗), t(W ∗)]

implies that WS
t (W

∗) < W ∗ for all [t(W ∗), t(W ∗)], which contradicts the definition of t(W ∗).

Alternatively, if t(W ∗) > 0, WS
t(W ∗)(W

∗) = WS
t(W ∗)

(W ∗) = W ∗. However, this is impossible

because WS
t (W

∗) strictly increases in t on [t(W ∗), t(W ∗)]. Hence, WS
t (W

∗) ≥ W ∗ at all

t ≤ T .

Furthermore, WS
t (W

∗) > W ∗ for a positive duration of time by the hypothesis that the

first candidate IType 1
T for the constrained optimal incentive scheme is not implementable.

Therefore, V ′(WS
t (W

∗)) is weakly negative at all t ≤ T and strictly negative for a positive

duration of time, which implies that

µPKG
0 (W ∗) = exp(−λ(t(wslack)− t))V ′(W ∗)+

∫ t(wslack)

t
exp(−λ(τ − t))λV ′(WS

τ (W
∗))dτ < 0.

Let us show that µPKG
0 ( c

∆λπ
P
T

) > 0. Observe that {WS
t (

c
∆λπ

P
T

)}t≤T is the exploitation utility

process induced by the second candidate IType 2
T for the constrained optimal incentive scheme.

Define:

MTIC
t := −λV ′(WS

t (
c

∆λπ
P
T

))−
∫ t

0
exp(−λ(τ − t))λ2V ′(WS

τ (
c

∆λπ
P
T

))dτ,
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which is the “hypothetical multiplier process” induced by the second candidate IType 2
T for

the constrained optimal incentive scheme. Since IType 2
T is assumed to be suboptimal, Propo-

sition 3 implies that there must exist some t1 ∈ [0, T ] such that MTIC
t1 < 0.

As an intermediate step, we provide a “phase-diagrammatic” argument to show that MTIC
t <

0 for all t ∈ (t1, T ]. Suppose, to the contrary that there exists t2 ∈ (t1, T ] such thatMTIC
t2 ≥ 0.

We may assume without loss of generality that t2 is the first such time after t1. Partially

differentiating Mt with respect to time yields:

∂MTIC
t

∂t
:= −λV ′′(WS

t (
c

∆λπ
P
T

))
∂WS

t (
c

∆λπ
P
T

)

∂t
+ λMTIC

t .

We wish to show that
∂MTIC

t
∂t < 0 for all t ∈ (t1, t2) to derive a contradiction. Observe that

V ′′(·) ≤ 0 by concavity. Furthermore, let us show that
∂WS

t ( c

∆λπP
T

)

∂t ≤ 0 for all t ∈ (t1, t2).

If
∂WS

t ( c

∆λπP
T

)

∂t > 0 were to hold true for some t′ ∈ (t1, t2), Step 3 would imply WS
t (

c
∆λπ

P
T

)

is weakly increasing in t over [0, t′], which in turn implies that WS
t ≥ W ∗ for all [0, t′].

Therefore, V ′(WS
t ) ≤ 0 for all [0, t′]. Hence, the definition of MTIC

t1 implies that it must

be weakly positive, which contradicts our hypothesis that it is strictly negative. Therefore,
∂WS

t ( c

∆λπP
T

)

∂t ≤ 0 for all t ∈ (t1, t2). Finally, since t2 is the first time such that MTIC
t2 ≥ 0 after

t1, M
TIC
t2 < 0 for all t ∈ (t1, t2). Hence,

∂MTIC
t
∂t < 0 for all t ∈ (t1, t2).

However, since MTIC
t1 is strictly negative and

∂MTIC
t
∂t < 0 for all t ∈ (t1, t2), M

TIC
t2 is strictly

negative by the mean-value theorem. However, this contradicts our hypothesis that MTIC
t2 ≥

0, which shows that MTIC
t < 0 for all t ∈ (t1, T ]. Hence, M

TIC
T < 0, which implies:

µPKG
0 (

c

∆λπ
P
T

) = exp(−λT )

(
V ′(

c

∆λπ
P
T

) +

∫ T

0
exp(−λτ)λV ′(WS

τ (
c

∆λπ
P
T

))dτ

)
︸ ︷︷ ︸

=−MTIC
T

> 0. (46)

Hence, µPKG
0 ( c

∆λπ
P
T

) > 0, and µPKG
0 (W ∗) < 0. By construction, µPKG

0 (wslack) is continuous

with respect to wslack.Hence, the intermediate value theorem implies that there exists w∗
slack ∈

( c
∆λπ

P
T

,W ∗) such that µPKG
0 (w∗

slack) = 0.

Step 5) By Proposition 3, it suffices to show that µTIC
t (w∗

slack) ≥ 0 for all t ∈ [0, T ]. Suppose,

to the contrary, that there exists t1 ∈ [0, t(w∗
slack)] such that µTIC

t1 (w∗
slack) < 0. Under this

hypothesis, almost exactly the same “phase-diagrammatic” arguments used in Step 3 to

show MTIC
t < 0 for all t ∈ (t1, T ] can be carried over to show that µTIC

t(w∗
slack)

(w∗
slack) < 0.

However, this contradicts the fact that µTIC
t(w∗

slack)
(w∗

slack) = 0 by the definition in (45), which
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completes the proof.

Proof of Proposition 5. The proof of Proposition 5 heavily relies on the construction and

methods given in the proof of Proposition 4, so it is useful to read the proof of Proposition 4

before going over the remaining part of the proof of Proposition 5. In Step 1, we show that

when the principal’s exploitation value function is V2, neither the incentive scheme IType 1
T

nor IType 2
T is a constrained optimal incentive scheme. This allows us to apply Proposition

4 to construct the unique constrained optimal incentive scheme under V2. In Step 2, we

show that the temporary incentive constraint is slack on [ti, T ] under the unique constrained

optimal incentive scheme under principal’s exploitation value function Vi for each i = 1, 2,,

and also that t2 < t1.

Step 1) We claim that when the principal’s exploitation value function is V2, neither the

incentive scheme IType 1
T nor IType 2

T is a constrained optimal incentive scheme. Suppose,

to the contrary, the incentive scheme IType 1
T is constrained optimal when the principal’s

exploitation value function is V2. Hence, the incentive scheme IType 1
T must satisfy the in-

centive compatibility constraint. However, this implies that the incentive scheme IType 1
T is

constrained optimal even when the principal’s exploitation value function is V1. If this is true,

then the constrained optimal incentive scheme under V1 cannot be optimal because IType 1
T

does strictly better, which contradicts our hypothesis.

Suppose, to the contrary, the incentive scheme IType 2
T is constrained optimal when the

principal’s exploitation value function is V2. For each t ≤ T , let WS,Type2
t denote the agent’s

time-t exploitation utility process associated with the incentive scheme IType 2
T . Since V1(·)

is strictly concave, Proposition 3 implies that the incentive scheme described in the statement

of Proposition 5 is the unique solution to the implementation Subprogram. The uniqueness

of the solution implies that the incentive scheme IType 2
T cannot be constrained optimal when

principal’s exploitation value function is V1, so there must exist t̃ < 0 such that the expression

in the first line must be strictly negative:

− λV ′
1(W

S,Type2

t̃
)−

∫ t̃

0
exp(−λ(τ − t̃))λ2V ′

1(W
S,Type2
τ )dτ

≥− λV ′
2(W

S,Type2

t̃
)−

∫ t̃

0
exp(−λ(τ − t̃))λ2V ′

2(W
S,Type2
τ )dτ

where the inequality in the second line follows from the initial hypothesis that V ′
1(·) is weakly

greater than V ′
2(·) at all points. Therefore, since the first line is strictly negative, the inequal-

ities above imply that the last line must be strictly negative. However, since the incentive

scheme IType 2
T is assumed to be constrained optimal, Proposition 5 implies that the last line
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must be weakly positive. This contradiction proves Step 1.

Step 2) Since neither the incentive scheme IType 1
T nor IType 2

T is a constrained optimal

incentive scheme under a strictly concave exploitation value function V2, there exists a unique

constrained optimal incentive scheme as described in Proposition 4 under V2. Moreover, the

proof of Proposition 4 shows that both the constrained optimal incentive scheme under V1 and

the one under V2 must belong to the family of incentive schemes as described in Step 2) of

the proof of Proposition 4. In particular, there exists w∗
1 ∈ [ c

∆λπ
P
T

,W ∗] such that the incentive

scheme {WS
t (w

∗
1)}t≤T is constrained optimal under the exploitation value function V1. This

implies that when the principal’s exploitation value function is V1, the time-0 multiplier

associated with the promise-keeping constraint under the incentive scheme {WS
t (w

∗
1)}t≤T is

zero, which can be formally expressed as follows:

0 = exp(−λt(w∗
1))V

′
1(w

∗
1) +

∫ t(w∗
1)

0
exp(−λτ)λV ′

1(W
S
τ (w

∗
1))dτ

< exp(−λt(w∗
1))V

′
2(w

∗
1) +

∫ t(w∗
1)

0
exp(−λτ)λV ′

2(W
S
τ (w

∗
1))dτ,

where the strict inequality follows from the fact that 1) w∗
1 ∈ [ c

∆λπ
P
T

,W ∗] and 2) V ′
2(w) is

weakly greater than V ′
1(w) for all w ≥ 0, and strictly greater whenever w ∈ [0,W ∗]. This

implies that when the principal’s exploitation value function is V2, the time-0 multiplier

associated with the promise-keeping constraint under the incentive scheme {WS
t (w

∗
1)}t≤T is

strictly higher than zero. Moreover, by arguing analogously to Step 4 of Proposition 4, we

can establish the following inequality:

exp(−λt(w∗
1))V

′
1(W

∗) +

∫ t(W ∗)

0
exp(−λτ)λV ′

1(W
S
τ (W

∗))dτ < 0

Therefore, by the intermediate value theorem, there must exist w∗
2 ∈ (w∗

1,W
∗) such that

exp(−λt(w∗
2))V

′
2(w

∗
2)+

∫ t(w∗
2)

0 exp(−λτ)λV ′
2(W

S
τ (w

∗
2))dτ = 0. Arguing as in Step 5 of Propo-

sition 4 shows that the incentive scheme {WS
t (w

∗
2)}t≤T is uniquely constrained optimal.

Moreover, by the definition given in Step 2 of the proof of Proposition 4, for each i = 1, 2,

the temporary incentive constraint is slack on the time interval [t(w∗
i ), T ] under the incentive

scheme {WS
t (w

∗
i )}t≤T . Hence, for each i = 1, 2, ti = t(w∗

i ) in the statement of Proposition 5.

Since t is a strictly decreasing function by Step 1 of Proposition 4 and w∗
1 < w∗

2, we must

have t2 < t1, which completes the proof.

Proof of Proposition 6. First, let us assume that the principal’s exploitation value function
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is VD(W
S
t ) = y −WS

t for some y > 0. Since the value function is downward sloping in WS
t ,

the temporary incentive compatibility constraint always binds throughout the exploration

phase in the optimal contract. Therefore, the sensitivity of the agent’s exploitation utility

to success must be equated to the minimal possible level: βG∗
T∗ = c

λπP
T∗

. Furthermore, since

V ′
D(W

S
t ) = −1 for all WS

t ≥ 0, we can use the co-state equation (CE) to obtain:

µPKG*
T = exp(λT )− 1 (47)

for any given T > 0. Therefore, the first-order condition in (21) can be written as follows:

λπP
T ∗
D
y − c− i = c(exp(λT ∗

D)− 1)(1− πP
T ∗
D
). (48)

when T ∗
D is the optimal termination time under the downward sloping value function VD(W

S
t ).

Since the shadow cost from delivering an additional utility on the right hand side of the last

equation is strictly positive, the principal prematurely terminates the relationship when her

belief πP
T ∗
D
is strictly above the first best threshold level πP

T ∗
First Best

= c+i
λy .

Fix any π ∈ (πP
T ∗
First Best

, πP
T ∗
D
) and let y := c+i

λπ . Observe that

y =
c+ i

λπP
T ∗
First Best

<
c+ i

λπ
= y,

where the strictly inequality follows from π > πP
T ∗
First Best

. Hence, y > y. Define an inverted

value function VI(·) as follows:

VI(W
S
t ) :=


−a1(W

S
t −W ∗)2 + y −W ∗ if WS

t ≤ W ∗

−a2(W
S
t −W ∗)2 + y −W ∗ if WS

t ∈ (W ∗,W1)

1
2(y + y)−WS

t if WS
t ≥ W1,

where the parameters W ∗, W1, a1, and a2 are respectively given by:

W ∗ =
c

λπ
, W1 = W ∗ +

y − y

3
, a1 =

y −W ∗

(W ∗)2
, a2 =

3

2(y − y)
.

It is easy to verify that the function VI is concave and differentiable everywhere, has the

unique maximizer W ∗ = c
λπ , and is strictly less than the function VD(W

S
t ) = y − WS

t for

every WS
t ≥ 0.

Let us show that under the value function VI , the relationship proceeds as follows in the

optimal contract. If the agent succeeds, the principal implements her optimal exploitation

contract (i.e., delivers W ∗ to the agent upon success) immediately upon success. The rela-
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tionship is terminated if the agent keeps failing until the principal’s belief is equal to π < πP
T ∗
D
.

This implies that the termination time under the value function VI must be strictly longer

than the termination time under the value function VD.

Since the minimal sensitivity to induce the agent to exert effort at the termination time is

equal to c
λπ = W ∗, the exploitation utility induced by the contract described above coincides

with the one given in (14). Therefore, the contract is incentive compatible by Lemma 5.

It remains to show that the contract does better than any incentive compatible contract.

For any fixed termination time, an incentive compatible contract can do no better than a

contract contracts that always delivers W ∗ to the agent upon success. Moreover, among all

the contracts that always deliver W ∗ to the agent upon success, the optimal termination

belief satisfies the following first condition with respect to termination time:

λπ V (W ∗)︸ ︷︷ ︸
= i

λπ

= i.

Since the contract above satisfies the optimality condition above, it does strictly better than

any incentive compatible contract, which completes the proof.

Proof of Lemma 12. First, we show that it is optimal for the agent to exert effort under the

contract described above. By computation, the agent’s equilibrium continuation value after

failing up to and including time t can be calculated as:

WG
t :=

∫ ∞

0
exp(−(λ+ r)t)(λmax{W ∗,

c

λ
} − c)dt =

max{λW ∗ − c, 0}
r + λ

.

If W ∗ < c
λ , the sensitivity βG

t := c
λ −WG

t of the agent’s time-t equilibrium continuation value

to success is equal to c
λ , which is exactly the minimal level required to incentivize the agent.

If W ∗ > c
λ , the sensitivity βG

t := W ∗ − WG
t of the agent’s time-t equilibrium continuation

value to success is equal to rW ∗+c
λ+r , which is greater than c

λ by the hypothesis that W ∗ > c
λ .

Therefore, the contract described above is incentive compatible.

We verify whether the contract described above is indeed optimal. First, let us assume that

W ∗ < c
λ . By this hypothesis, the principal’s value function V in the second phase must be

strictly decreasing on the interval [ cλ ,∞). Since the agent must be promised at least c
λ upon

success to exert effort, this implies that there cannot be any incentive scheme that improves

upon the one that promises c
λ upon success. Second, let us assume that W ∗ > c

λ . Since W ∗

is the unique maximizer of V (·), no incentive scheme can improve upon one that promises

W ∗ upon success. This completes the proof.
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