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Abstract A long-standing question about consumer behavior is whether individuals’
observed purchase decisions satisfy the revealed preference (RP) axioms of the utility
maximization theory (UMT). Researchers using survey or experimental panel data
sets on prices and consumption to answer this question face the well-known problem
of measurement error. We show that ignoring measurement error in the RP approach
may lead to overrejection of the UMT. To solve this problem, this paper proposes a
new statistical RP framework for consumption panel data sets that allows for testing
the UMT in the presence of measurement error. Our test is applicable to all consumer
models that can be characterized by their first-order conditions. Our approach is
nonparametric, allows for unrestricted heterogeneity in preferences, and requires
only a centering condition on measurement error. We develop two applications
that provide new evidence about the UMT. First, we find support in a survey
dataset for the dynamic and time-consistent UMT in single-individual households,
in the presence of nonclassical measurement error in consumption. In the second
application, we cannot reject the static UMT in a widely used experimental dataset
where measurement error in prices is assumed to be the result of price misperception
due to the experimental design. The first finding stands in contrast to the conclusions
drawn from the deterministic RP test of Browning (1989). The second finding reverses
the conclusions drawn from the deterministic RP test of Afriat (1967) and Varian
(1982).
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1. Introduction

One well-known feature of consumer panel data sets—whether they are based on surveys,
experiments, or scanners—is measurement error in prices or consumption.1 This is of significant
concern because measurement error is responsible for one important limitation of the standard
revealed-preference (RP) framework. Specifically, RP tests tend to overreject the utility maximiza-
tion theory (UMT). To the best of our knowledge, this paper proposes the first fully nonparametric
statistical RP framework for consumer panel data sets in the presence of measurement error. We
show that taking measurement error into account can significantly change the conclusions about
the validity of the UMT. In the two applications we develop, we cannot reject the validity of the
UMT, a finding which contradicts the conclusions of the deterministic RP framework.

Measurement error is the difference between the unobserved but true value of the variable of
interest and its observed but mismeasured counterpart. If the UMT is valid, the corresponding RP
conditions must be satisfied by the true prices and consumption. However, there is no reason to
believe that either the mismeasured consumption or prices that we usually observe are consistent
with the RP conditions. A key concern for RP practitioners is that in the presence of measurement
error, a deterministic RP test may overreject the null hypothesis that the UMT is valid. We
provide Monte Carlo evidence that this concern may be very relevant in practice: the standard
deterministic RP test can reject rationalizable behavior with high probability (close to 1) due to
perturbations caused by only moderate measurement error. Measurement error in consumption
may arise in survey data due to misreporting, in experimental data due to trembling-hand errors,
and in scanner data due to recording errors. Measurement error in prices may arise in experimental
data due to limited attention and in scanner data due to unobserved coupons.

Our methodology covers (but is not restricted to) the important cases of the static UMT, and
the classic dynamic UMT with exponential discounting. Applying our methodology to a consumer
panel survey of Spanish households, we find that the dynamic UMT with exponential discounting
cannot be rejected for single-individual households when allowing for measurement error arising
from misreporting of consumption. This first finding contradicts the conclusions of the deterministic
RP test of Browning (1989). Applying our framework to a widely used experimental data set (Ahn
et al. (2014)), we find that the static UMT cannot be rejected when allowing for measurement error
in prices that arises due to limited attention. This second finding reverses the conclusions we draw
when we apply the deterministic RP test of Afriat (1967) and Varian (1982) to the same data set.
Taken together, these findings suggest that the negative conclusions about the validity of the UMT
drawn from the deterministic RP framework may not be robust to measurement error.

The leading solution for dealing with measurement error in the RP framework usually consists
of perturbing (minimally) any observed individual consumption streams in order to satisfy the
conditions of a RP test (Adams et al. (2014)). However, this approach does not allow for standard
statistical hypothesis testing. In particular, one cannot control the probability of erroneously
rejecting a particular model when such a rejection could be an artifact of noisy measurements.

1See Mathiowetz et al. (2002), Echenique et al. (2011), Carroll et al. (2014), and Gillen et al. (2017).
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Other works on RP with measurement error, such as the seminal contribution of Varian (1985), allow
for statistical hypothesis testing but require knowledge of the distribution of measurement error;
this may be impractical and does not align with the nonparametric nature of the RP framework.
Our procedure does not suffer from these issues.

Our RP methodology allows for standard statistical hypothesis testing, takes measurement
error into account, is fully nonparametric, and admits unrestricted heterogeneity in preferences. In
addition, we require only a weak centering assumption on the unobserved measurement error. The
centering condition is application-specific. Moreover, our framework is general enough to allow for
nonclassical measurement errors in consumption in survey environments, trembling-hand errors in
experimental setups, limited attention to prices due to experimental designs (price measurement
error), and different forms of measurement error of prices and consumption in both experimental
and scanner environments.

In our first application in particular, we require that consumers be accurate, on average, in
recalling and reporting their total expenditures. This assumption is compatible with systematic
misreporting of consumption in surveys. That is, we allow individuals to systematically overreport
or underreport their consumption. For our second application to an experimental data set, we
require that errors in consumption or prices be centered around zero, which is compatible with
trembling-hand and limited-attention errors in experimental subjects’ behavior. Measurement error
in experimental data sets may arise because the experimental design may fail to elicit the intended
choices of consumers. In such a case, classical measurement error assumptions that allow for
nonsystematic mistakes must be taken into account to ensure the external validity of the conclusions
drawn from applying any RP test to this type of data set.

We use our main result to formulate a statistical test for the null hypothesis that a random
data set of prices and consumption is consistent with any given model that can be characterized by
first-order conditions. Our approach takes advantage of the work of Schennach (2014) on Entropic
Latent Variable Integration via Simulation (ELVIS) to provide a practical implementation of our
test.

We wish to emphasize that our statistical methodology can be applied to several other RP models
including (but not limited to) firm-cost minimization (Varian (1984)), dynamic rationalizability
with quasi-hyperbolic discounting (Blow et al. (2017)), homothetic rationalizability (Varian (1985)),
quasilinear rationalizability (Brown and Calsamiglia (2007)), and static utility maximization with
nonlinear budget constraints (Forges and Minelli (2009)). However, for the sake of concreteness
and due to their importance for applied work, we focus on the static UMT (Afriat (1967)), and the
intertemporal UMT with exponential discounting behavior (Browning (1989)).

We also provide a general methodology to make out-of-sample predictions or counterfactual
analysis with minimal assumptions. We provide a general framework to bound average or quantile
demand; the framework allows for unrestricted heterogeneity, and measurement error.2

Our empirical contribution is to apply our methodology to a consumer panel survey of single-
2Marschak (1974) suggested that a counterfactual exercise should start by establishing the minimal set of

assumptions and data needed to make predictions of interest. We believe that, by combining the first-order
conditions RP approach with ELVIS, our methodology satisfies this principle.
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individual and couples’ households in Spain, in order to test for the dynamic UMT with exponential
discounting,3 and to reexamine the static UMT in a widely used experimental data set (Ahn et al.
(2014)); in doing this reexamination, we allow (separately) for trembling-hand errors and limited
attention to prices. For the first application, we note that under the exponential discounting
model, the consumer’s time preferences are captured by a time-invariant discount factor and a
time-invariant instantaneous utility. The main feature of this model is the time-consistency of the
exponential discounting consumer. In other words, if the consumer prefers consumption bundle c
at time t to x at time t+ k, then she will always prefer c at time τ to x at time τ + k.

The exponential discounting model remains the workhorse of a large body of applied work in
economics. Nevertheless, this model is under increasing scrutiny in the light of experimental evidence
that tends to find that the behavior of experimental subjects is time-inconsistent. Unfortunately,
there is less evidence from the field concerning time-inconsistent behavior, and in particular, less
evidence from survey data. Several authors, such as Browning (1989), DellaVigna and Malmendier
(2006), and Blow et al. (2017), have provided suggestive evidence from the field that calls into
question the validity of the exponential discounting model. Our methodology addresses, in a
nonparametric fashion, the presence of measurement error in survey data, in order to examine the
robustness of these findings from the field.

We find support for exponential discounting behavior for single-individual households. This
contrasts with the results of applying the deterministic methodology of Browning (1989) to the
same sample. At the same time, in line with the findings of Blow et al. (2017) (who also use
the deterministic methodology of Browning (1989)), we reject the null hypothesis of exponential
discounting for the case of couples. When compared with the single-household evidence, these
results suggest that time inconsistencies in consumer behavior in the couples’ case arise due to
preference aggregation.

In our second application, we apply our methodology to the experimental budget-allocation data
set of Ahn et al. (2014) to test for the validity of the classical static UMT. The static UMT is at
the heart of most applied and theoretical economic models that assume perfectly rational decision
makers. Since the work of Afriat (1967) and Varian (1982), researchers have used the deterministic
RP framework to examine the validity of the UMT in experimental data sets. The experimental
design proposed by Ahn et al. (2014) is particularly useful for this task since it provides a controlled
environment with substantial price variation that guarantees that the UMT has empirical bite.

When we apply the deterministic RP test to this experimental data set, we conclude that the
UMT is rejected for most subjects. Nonetheless, the external validity of the conclusions drawn from
the deterministic RP tests applied to these experimental data sets may be limited. One key reason
for this is that the elicitation of consumer behavior may have been subject to measurement error.
Gillen et al. (2017) argue that experimental elicitations of choices are subject to random variation
in participants’ attention and focus. More important, there is an imperfect relation between elicited
proxies of choice and the intended choice behavior the experiment tries to capture. Moreover,
RP practitioners since Afriat (1967) have recognized that the deterministic RP test for the static

3This data set has been used in Beatty and Crawford (2011), Blow et al. (2013), and Adams et al. (2014).
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UMT may be too demanding in the presence of imperfect devices for the elicitation of choices.
Many researchers have studied how to allow for optimization mistakes in the RP framework and
how to measure the intensity of any departure from rationality.4 However, none of the existing
approaches designed to introduce the possibility of mistakes in the RP framework has allowed for a
fully nonparametric approach to doing standard statistical hypothesis testing. In our application,
we allow for the possibility of nonsystematic mistakes by requiring that the measurement error of
consumption or prices be mean zero.5 We think of this type of mistake in eliciting choice as arising
from trembling-hand errors or nonsystematic limited-attention errors.6

We cannot reject the null hypothesis of the validity of the static UMT with misperception of
prices. However, when we allow only for trembling-hand errors in consumption, we must strongly
reject the static UMT. Our findings call into question the robustness of the deterministic RP test
that is due to Afriat (1967) and Varian (1982) to measurement error in prices. In this sense, we
also put into perspective the use of graphical representations of budget constraints in the popular
choice experimental design due to Choi et al. (2014) and Ahn et al. (2014).

Outline

The paper proceeds as follows. Section 2 presents a brief literature review about previous studies
to extend the RP methodology to the case of measurement error. Section 3 presents the first-order
conditions approach to the deterministic RP methodology that we use as a benchmark. Section 4
contains the main contribution: our new statistical nonparametric test for any model characterized
by its first-order conditions under shape constraints in the presence of measurement error. Here, we
introduce a centering condition on the measurement error on consumption and prices. We formulate
a new statistical notion of rationalizability on the basis of the ELVIS methodology (Schennach
(2014)). Section 5 establishes a testing framework for statistical rationalizable behavior. Section 6
implements our empirical test for the case of the dynamic UMT with exponential discounting in a
consumer panel-survey data set used in Adams et al. (2014). Section 7 implements our methodology
for the case of the static UMT in an experimental data set due to Ahn et al. (2014). Section 8
presents a new statistical framework for recoverability and out-of-sample predictions on the basis of
our testing methodology. Finally, we conclude in section 9. All proofs can be found in appendix A.
Appendix B contains Monte Carlo experiments that assess the performance of our testing procedure
in finite samples. In addition, appendix C includes an application of our test to the collective
exponential discounting model.

4See Afriat (1967), Varian (1990), and Echenique et al. (2011).
5We maintain support restrictions on measurement error that impose the nonnegativity constraint on the

unobserved true consumption or prices, and require that all choices be forced to exhaust the experimental endowment
or wealth at each trial.

6This approach is significantly different from the widespread Afriat Efficiency Index (AEI) (Afriat (1967)) that
is interested in measuring small optimization mistakes as the wasted income that a consumer incurred without
improving his welfare. Instead, in our methodological framework, we can allow for large errors as long as these are
due to trembling-hand mistakes or limited attention.
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2. Literature Review

In this work, we exploit the fact that many models of consumer choice (and of decision-making in
general), both static and dynamic in nature, can be fully characterized by their first-order conditions.
In his seminal work, Afriat (1967) shows that in order to test the consistency of a finite data set
of prices and consumption with a model of interest, it is sufficient to impose shape constraints
on the unobserved utility function and thereby bypass the need to parametrize such first-order
conditions. We generalize this insight by allowing measurement error in consumption and prices.
Among authors using the deterministic RP approach, the immediate antecedents to our work using
the first-order approach are (i) Browning (1989) in the context of dynamic rationalizability with
exponential discounting, (ii) Blow et al. (2017) for dynamic rationalizability with quasi-hyperbolic
discounting, and (iii) Brown and Calsamiglia (2007) for static quasilinear utility maximization. (All
these cases are applications of Rockafellar (1970)). Important advances have been made on testing
and doing counterfactual analysis under random rationalizability or random utility.7 However, the
majority of these results assume that observed quantities are measured accurately. In this regard,
these works are focused mostly on the heterogeneity of preferences. In contrast, our framework is
concerned with both heterogeneity and measurement error.

Varian (1985) is possibly the first work to introduce the subject of measurement error into
the RP approach. Varian’s methodology is the closest to that of our own work; he considers
precisely measured (albeit random) prices to study measurement error in consumption. Varian’s
work is compatible with standard statistical hypothesis testing under the strong assumptions of
normality (with known variance) and additivity of consumption measurement error. In contrast, our
methodology is fully nonparametric. We are able to improve upon Varian’s methodology and relax
its core assumptions by using a moments approach to measurement error in the RP framework.

Other papers have dealt with measurement error under different parametric assumptions about
measurement error or about the heterogeneity of preferences. Gross (1995) assumes that random
consumption is generated by consumers with similar preferences. In contrast, our approach allows
for unrestricted heterogeneity in preferences. Tsur (1989) imposes a log-normal multiplicative
measurement-error structure in expenditures. Hjertstrand (2013) proposes a generalization of Tsur
(1989) and of Varian (1985), one which provides a statistical framework for testing RP consistency
but requires knowing the distribution of measurement error. Our approach only requires a centering
condition on the measurement error distribution. Echenique et al. (2011) assume that measurement
error in prices is a normal random variable independent across households and prices with a
fixed mean and known variance. They propose a statistical test for quasilinear rationalizability
(they assume marginal utilities of wealth are the same across individuals).8 Our methodology
is nonparametric, and does not require the homogeneity assumption on the marginal utilities of
wealth. In a recent paper, Deb et al. (2017) consider a nonparametric model of “price preference.”

7Relevant examples are Blundell et al. (2014), Dette et al. (2016), Kitamura and Stoye (2016), and Lewbel and
Pendakur (2017).

8Even when theoretically their test has necessary and sufficient conditions, computing their test statistic is
computationally prohibitive; they implement only necessary conditions.
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They propose a RP test of their model (based on Kitamura and Stoye (2016)) that is robust
to small measurement error in prices (their main focus is on sampling error when testing using
repeated cross-sectional data in a random utility framework). In contrast, our methodology allows
for substantially large perturbations of observed quantities. Boccardi (2016) considers a case of
demand with error (possibly measurement error) and focuses on establishing a way to account for
the trade-off between the fit of the model and its predictive ability. In her framework, rationality
loses its empirical content and statistical hypothesis testing is not possible (which is a generalization
of Beatty and Crawford (2011)).

In practice, the RP theorists (e.g., Adams et al. (2014), and Cherchye et al. (2017)) have
dealt with measurement error by perturbing (minimally) the observed individual consumption in
order to satisfy the conditions of a RP test. For instance, Adams et al. (2014) find the additive
perturbation with a minimal norm that renders the individual consumption streams compatible
with the RP restrictions. Then a subjective threshold is imposed on the maximum admissible norm
of the measurement error vector. If the computed norm is above the threshold, then the model is
rejected. However, their methodology has one important drawback: every data set can be made to
satisfy their test or, equivalently, the test has no power (given the subjectivity of the threshold).
In addition, it is unclear in their model what the probability of rejecting the null hypothesis is
when the null hypothesis is in fact true. This is undesirable for a statistical test. In contrast, our
approach allows one to perform traditional statistical hypothesis testing without compromising the
generality of the RP conditions under a weak centering assumption on measurement error. This is
important because in our methodology the critical value used to conduct the test arises from the
asymptotic behavior of our test statistic.

Among researchers using the RP approach, Blundell et al. (2003) are the first to provide
consumer demand bounds, under the assumption of static utility maximization in a semiparametric
environment (with additive heterogeneity) in which income changes continuously. Our work differs
from theirs mainly in that we allow for unrestricted heterogeneity in preferences, do not require
that income be observable, nor we impose semiparametric assumptions on wealth effects to provide
bounds for demand, given new prices. In addition, since they do not focus on measurement error
in consumption, it is not clear if nonclassical measurement error can be compatible with their
approach. We believe that Blundell et al. (2003) and our own work can be seen as complements as
their approach is useful for repeated cross-sectional data sets and ours is designed for panel data
sets.9

A recent paper by Gillen et al. (2017) proposes parametric econometric techniques to deal with
measurement error in experimental setups. They discover that several experimental findings may
not be robust to the presence of measurement error. However, their very interesting approach
cannot be used in a nonparametric setup such as the one we are considering.

9Weyl (2009) discusses a parametric methodological approach to identify (not to test) the first-order conditions.
Our work differs from that interesting approach in that we do not require point identification. Instead, we focus on
set-valued predictions in a fully nonparametric framework.
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3. The Revealed-Preference Methodology and the First-Order Conditions
Approach

The main objective of this section is to provide a brief summary in a united fashion of two very
important deterministic consumer models and their RP characterization. In particular, we study
the static UMT or rational model (R), and the dynamic UMT with exponential discounting (ED).
These models are at the center of many applied and theoretical works. We show that they can be
completely characterized by their first-order conditions in a RP fashion. All quantities used here
are assumed to be measured precisely.

Let the consumption space be RL
+ \ {0}, where L ∈ N is the number of commodities.10 Consider

a consumer who is endowed with a utility function u : RL
+ → R that is assumed to be concave,

locally nonsatiated, and continuous. The consumer faces a sequence of decision problems indexed
by t ∈ T , where T = {0, · · · , T}, with a known and finite T ∈ N. At each decision problem t ∈ T ,
the consumer faces the price vector pt ∈ RL

++.

Definition 1. (Static UMT, R-rationalizability) A deterministic array (pt, ct)t∈T is R-rationalizable
(in a static sense) if there exists a concave, locally nonsatiated, and continuous function u, and
some constants yt > 0, t ∈ T , such that the consumption bundle ct solves:

max
c∈RL

+

u(c),

s.t. p′tc = yt,

for all t ∈ T .

Next we focus our attention on the dynamic UMT with exponential discounting. We assume
that an individual consumer has preferences over a stream of dated consumption bundles (ct)t∈T ,
where T = {0, · · · , T}, T ∈ N, and ct ∈ RL

+ \{0}. (The number of goods, L, is kept the same across
the time interval.) At time τ , the consumer chooses how much cτ she will consume by maximizing

Vτ (c) = u(cτ ) +
T−τ∑
j=1

dju(cτ+j),

subject to the linear budget or flow constraints shown here:

p′tct − yt + st − at = 0, t = τ, . . . , T,

where d ∈ (0, 1] is the discount factor; pt ∈ RL
++ is the price vector as before; yt ∈ R++ is income

received by the individual at time t; st is the amount of savings held by the consumer at the end
10We use N to denote the set of natural numbers. The expression RL

+ denotes the set of componentwise nonnegative
elements of the L-dimensional Euclidean space RL, and RL

+ \ {0} denotes the set of vectors v ∈ RL
+ that are distinct

from zero (v 6= 0). Similarly, RL
++ denotes the set of componentwise positive elements of RL

+. The inner product of
two vectors v1, v2 ∈ RL is denoted by v′1v2.
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of time t; and at is the volume of assets held at the start of time t. The consumer invests all her
savings. Moreover, the assets evolve according to the following law of motion:

at = (1 + rt)st−1,

where rt+1 > −1 is the interest rate that is accessible for the consumer. The holdings of assets in
the last period (t = T ) are set to be zero.

The intertemporal value function, Vt : RL×(T−t+1)
+ → R++, represents the consumer preferences

at a given time t. The components of this representation are the parameters of the model. First,
d ∈ (0, 1] is a scalar number that measures the degree of discount that the consumer gives to the
future. Second, u : RL

+ → R++ is an instantaneous utility function that is assumed to be concave,
locally nonsatiated, and continuous. The exponential discounting consumer is time-consistent, that
is, she will solve the dynamic problem above the same way at any point of the time window. In
particular, the time-consistent consumer will be able to keep her commitment to the solution to
the problem at the first time period (τ = 0).

Definition 2. (Dynamic UMT, ED-rationalizability) A deterministic array (pt, rt, ct)t∈T is ED-
rationalizable if there exist a concave, locally nonsatiated, and continuous function u, a vector
(yt)t∈T ∈ R|T |++, and a scalar a0 ≥ 0 such that the consumption stream (ct)t∈T solves:

max
z∈RL×|T |

+

u(z0) +
T∑
t=1

dtu(zt),

subject to

p′0z0 +
T∑
t=1

p′tzt∏t
i=1[1 + ri]

=
T∑
t=1

yt∏t
i=1[1 + ri]

+ a0.

3.1. The First-Order Conditions Approach

Now we establish that any consumer model m ∈ {R,ED} can be completely characterized in
terms of its first-order conditions with respect to (i) a concave, locally nonsatiated, and continuous
utility function u : RL

+ → R, (ii) the effective (or transformed) prices ρm
t ∈ RL

++, and (iii) restrictions
on some constants λm

t ∈ R++ and δm
t ∈ (0, 1], interpreted as the marginal utility of income and

the discount rate, respectively. We call this the first-order conditions approach. Observe that the
utility function is model-independent, but the effective prices, the marginal utility of income, and
the discount rate are not. We define the effective prices in Table 1.

Table 1 – Definition of ρm
t

m R ED

ρm
t pt pt/

∏t
j=1(1 + rj)
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Let ∇u(ct) denote a supergradient of u at the point ct. (Under differentiability, ∇u(ct) is a
gradient.)

Lemma 1. For any model m ∈ {R,ED}, a deterministic array (ρm
t , ct)t∈T is m-rationalizable if

and only if there exists (u, (λm
t , δ

m
t )t∈T ) such that

(i) u : RL
+ → R is a concave, locally nonsatiated, and continuous utility function;

(ii) δm
t ∇u(ct) ≤ λm

t ρ
m
t for every t ∈ T . If ct,j 6= 0, then δm

t ∇u(ct)j = λm
t ρ

m
t,j, where ct,j, ∇u(ct)j,

and ρt,j are the j-th components of ct, ∇u(ct), and ρt, respectively;

(iii) λR
t = λt > 0 and δR

t = 1 for all t ∈ T ;

(iv) λED
t = 1 and δED

t = dt, where d ∈ (0, 1], for all t ∈ T .

This lemma summarizes the results in Browning (1989) for the exponential discounting case,
and it is trivial for the static rationalizability case. Even if we focus on these two models for
expositional and motivational purposes, our methodology is applicable to any model that can be
characterized using the first-order conditions approach.
Remark 1. Lemma 1 allows for nondifferentiable utility functions. So, the supergradient of u(ct)
may be set-valued. In this case one should read the condition δm

t ∇u(ct) ≤ λm
t ρ

m
t as “there exists

ξ ∈ ∇u(ct) such that δm
t ξ ≤ λm

t ρ
m
t .”

3.2. The Elimination of a Latent Infinite-Dimensional Parameter

Since our objective is not to estimate but to test m-rationalizability, we will eliminate the
utility function u from its characterization. We follow the theorists of RP to eliminate the latent
infinite-dimensional parameters by exploiting their shape restrictions.

In particular, we follow Afriat (1967), Varian (1985), Browning (1989), and Rockafellar (1970)
to formulate a result that eliminates the utility function u (an infinite dimensional parameter)
from the first-order conditions. The cost of doing this is that we have to replace the first-order
conditions by a set of inequalities. However, these inequalities do not depend any more on the
infinite-dimensional parameter u. Moreover, they require only the concavity of u. As a result, the
inequalities are exact and do not involve any form of approximation; this is an advantage compared
to other nonparametric methods (e.g., sieves, kernel estimators) or the parametric approach used
in many applied papers.

To formulate our result, we first recall the definition of the concavity of u.

Definition 3. (Concavity) A utility function u is said to be concave if and only if u(cs)− u(ct) ≤
∇u(ct)′(cs − ct), for all s, t ∈ T .

Remark 2. In Definition 3 we implicitly assume the existence of the supergradient of u. Since the
supergradient may be set-valued, one should read the condition u(cs)− u(ct) ≤ ∇u(ct)′(cs − ct) as
“u(cs)− u(ct) ≤ ξ′(cs − ct) for all ξ ∈ ∇u(ct).”
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The nonparametric characterization of the m-rationalizability of observed consumption and
prices without measurement error is captured by the following result.

Theorem 1. For any m ∈ {R,ED}, the following are equivalent:

(i) The deterministic array (ρm
t , ct)t∈T is m-rationalizable.

(ii) There exist vectors (λm
t )t∈T , (δt)t∈T , and a positive vector (vt)t∈T such that:

vt − vs ≥
λm
t

δm
t

ρm
t
′(ct − cs),

with λR
t = λt > 0, δR

t = 1, λED
t = 1, and δED

t = dt, where d ∈ (0, 1], for all t, s ∈ T .

Theorem 1 summarizes known results from the RP literature.11 Observe that Theorem 1 has
transformed the first-order conditions that depend on the infinite-dimensional u to a set of inequality
conditions that depend only on a deterministic finite-dimensional array (vt, δm

t , λ
m
t )t∈T . Nonetheless,

this set of conditions is satisfied if and only if we can find a utility function that satisfies the
conditions in Lemma 1. Checking the set of inequalities is a parametric problem that tells us
whether a consumption stream is m-rationalizable.

This methodology is traditionally applied at the individual level in panel data sets, assuming
that the data contains no measurement error. The results are often disappointing, with high rates
of rejections for some of the models of interest. We argue that this may be an overly pessimistic
conclusion, and possibly an artifact of measurement error. For that reason, in the next section we
extend the RP framework to a noisy or stochastic environment. (Testing our version of statistical
m-rationalizability is a convex programming problem.) We illustrate this point in the application
section (section 6) by testing for ED-rationalizability and R-rationalizability in the presence of
measurement error.

4. The Revealed-Preference Approach with Measurement Error

In this section, we introduce a new statistical notion of m-rationalizability (henceforth, s/m-
rationalizability) with mismeasured consumption or prices, and provide a result similar to Theorem
1 in the presence of measurement error. From here on, we use boldface font to denote random
objects and regular font for deterministic ones.

11The proof is a consequence from the results in Afriat (1967), Varian (1985), and Browning (1989) taken together.
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4.1. Statistical Rationalizability

We are interested in testing a statistical model of consumption such that each individual is an
independent, identically distributed (i.i.d.) draw from some stochastic consumption rule. Note that
by Lemma 1 the choice of a particular model m only affects the definition of the effective price,
and the restrictions on the marginal utility of income and the discount rate. Henceforth, we fix
some model such that the effective prices, and the restrictions on the marginal utility of income
and the discount rate are known, and we omit the superscript m from the notation.

Using Lemma 1 as motivation, we directly define s/m-rationalizability as follows. Let ρ∗t ∈ P ∗t ⊆
RL

++ and c∗t ∈ C∗t ⊆ RL
+ \ {0} denote random vectors of true effective prices and true consumption

at time t, respectively.12

Definition 4. (s/m-rationalizability) A random array (ρ∗t , c∗t )t∈T is s/m-rationalizable if there
exists a tuple (u, (λt, δt)t∈T ) such that

(i) u is a random, concave, locally nonsatiated, and continuous utility function;

(ii) (λt)t∈T is a positive random vector, interpreted as the marginal utility of income, supported
on or inside a known set Λ ⊆ R|T |++;

(iii) (δt)t∈T is a positive random vector, interpreted as time-varying discount factor, supported on
or inside a known set ∆ ⊆ (0, 1]|T |;

(iv) δt∇u(c∗t ) ≤ λtρ∗t a.s. for all t ∈ T ;

(v) For every j = 1, . . . , L and t ∈ T , it must be that P
(
c∗t,j 6= 0, δt∇u(c∗t )j < λtρ∗t,j

)
= 0, where

c∗t,j, ρ∗t,j, and ∇u(c∗t )j denote the j-th components of c∗t , ρ∗t , and ∇u(c∗t ), respectively.

This definition means that for a given realization of (i) the utility function, (ii) the marginal
utility of income, and (iii) the discount rate, the realized effective prices and the realized true
consumption should fulfill the inequality δt∇u(c∗t ) ≤ λtρ

∗
t . This is a special case of the dynamic

random utility model in which the preferences (captured by u), the random discount factor (captured
by (δt)t∈T ), and the distribution of the marginal utility of income (captured by (λt)t∈T ) are drawn
at some initial time for each consumer, and then are kept fixed over time.

Several consumer models can be characterized by their first-order conditions and by restrictions
on the marginal utility of income, as we observed in section 3. For instance, we define the
statistical version of R-rationalizability or s/R-rationalizability by requiring that the support of
the marginal utility of income be strictly positive (i.e., Λ = R

|T |
++), and the discount rate to be one

(i.e., ∆ = {1}|T |). Similarly, we define s/ED-rationalizability by imposing that Λ = {1}|T |, and the
12For short, we use a.s. instead of "almost surely." We denote (i) the probability of an event A by the expression

P (A); (ii) the indicator function by 1 (A ) = 1 when the statement A is true, otherwise it is zero; (iii) the
mathematical expectation of any random vector z by the expression E [z]; (iv) the condition expectation of any
random vector z1 conditional on another random vector z2 by the expression E [z1|z2]; (v) the cardinality of a set A
is given by the expression |A|; (vi) the norm of a vector v is given by ‖v‖; and (vii) the independence of two random
variables (z1, z1) by the expression z1 ⊥⊥ z2.
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support ∆ be given by the restriction δt = dt, where d is a random variable supported on (0, 1].
The effective prices in each case have to be defined according to Table 1.

Given the definition of s/m-rationalizability, we can now formulate the stochastic version of
Theorem 1.

Lemma 2. For a given random array (ρ∗t , c∗t )t∈T , the following are equivalent:

(i) The random array (ρ∗t , c∗t )t∈T is s/m-rationalizable.

(ii) There exist positive random vector (vt)t∈T , (λt)t∈T supported on or inside Λ, and (δt)t∈T
supported on or inside ∆ such that

vt − vs ≥
λt
δt
ρ∗t
′(c∗t − c∗s) a.s., ∀s, t ∈ T .

Lemma 2 allows us to statistically test the s/m-rationalizability of (ρ∗t , c∗t )t∈T . However, any
test based on this notion of rationalizability cannot differentiate between quasi-consistent cases and
exact s/m-rationalizabilty (an issue first identified by Galichon and Henry (2013)). The reason
is that there can be random choice rules that are not s/m-rationalizable, and that are arbitrarily
close to being s/m-rationalizable. The issue arises because the set of s/m-rationalizable behaviors
may not be closed. That is why we need to extend the notion of the consistency of a data set that
is characterized by s/m-rationalizability.

Example 1. (Hyperbolic Discounting) Consider the case of a consumer who maximizes

Vτ (c) = u(cτ ) + β
T−τ∑
j=1

dju(cτ+j),

where β ∈ (0, 1] is the present-bias parameter. It is easy to see that if β → 1, then the consumption
stream generated by this model is arbitrarily close to the ED-rationalizable behavior.

Definition 5. (Approximate s/m-rationalizability) We say that (ρ∗t , c∗t )t∈T is approximately
consistent with s/m-rationalizability if there exists a sequence of random variables (v′j,λ′j, δ′j)′ ∈
R
|T |
+ × Λ×∆, j = 1, 2, . . . , such that

P

(
1

(
vj,t − vj,s ≥

λj,t
δj,t
ρ∗t
′[c∗t − c∗s]

)
= 1

)
→j→+∞ 1,

for all s, t ∈ T .

4.2. Introducing Measurement Error

Theorem 1 and Lemma 2 allow us to get testable implications of s/m-rationalizability. These
implications depend solely on the distribution of λ = (λt)t∈T , δ = (δt)t∈T and v = (vt)t∈T . The
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usual approach to testing s/m-rationalizability would amount to solving a (non)linear programming
problem corresponding to Theorem 1 at the level of individual consumers. However, this common
practice does not work any more in the presence of measurement error. When true consumption
or true prices are measured erroneously, we observe not c∗t or ρ∗t but rather perturbed versions of
them.

Remark 3. Measurement error in consumption in (recall) surveys arises because consumers are asked
to report past consumption patterns in a periodic nature. Consumers may fail to correctly report
their consumption level due to bounded recall, social desirability, and mistakes in communication.
Thus, self-reported consumption is likely to be mismeasured.

Remark 4. Measurement error in consumption in budgeting experimental tasks arises because the
experimental devices to elicit consumer choices may be imprecise. In particular, the experimental
subjects may not sufficiently incetivized to take high-quality decisions (low stakes), the attention
of experimental subjects may be unnaturally low (limited attention due to the design), or the
experimental environment may be new or difficult to understand for the experimental subjects
causing them to make nonsystematic mistakes (trembling-hand errors).

Define the measurement error w = (wt)t∈T ∈ W as the difference between reported con-
sumption and prices, c = (ct)t∈T and ρ = (ρt)t∈T ; and true consumption and prices, (c∗t )t∈T and
(ρ∗t )t∈T . That is,

wt =
 wc

t

wp
t

 ,
where wc

t = ct − c∗t and wp
t = ρt − ρ∗t for all t ∈ T .

It is important to note that we define the measurement error. We do not make any assumptions
about how the difference between observed and true quantities arises (i.e., we allow for measurement
error to be multiplicative or additive).13 Moreover, we neither assume that measurement error
is independent from other variables nor assume that measurement errors are independent across
goods.

By Lemma 2 we can immediately conclude that the observed x = (ρt, ct)t∈T can be s/m-
rationalized if and only if there exist (λt, δt,vt,wt)t∈T , with (λt)t∈T supported on or inside Λ, and
(δt)t∈T supported on or inside ∆ such that

vt − vs ≥
λt
δt

(ρt −wp
t )′(ct − cs + wc

s −wc
t) a.s.,∀s, t ∈ T .

However, we know that without restrictions on the distribution of measurement error, RP tests
have no power. That is, there always exists a measurement error w such that the observed x is
consistent with s/m-rationalizability. The source of measurement error is different in different
applications. That is why in this section we formulate a general restriction on the measurement
error distribution that can be tailored to both of our empirical applications.

13Formally this makes the support W depend on the support of both the observed and the true quantities. For
simplicity we omit this dependency from the notation.
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Recall that x ∈ X denotes observed quantities. Let e = (λ′, δ′,v′,w′)′ ∈ E|X denote the vector
of latent random variables, supported on or inside the conditional support E|X.

Definition 6. (Measurement Error Moment) We say that a mapping gM : X × E|X → RdM is a
measurement error moment for some known dM ≥ 1.

The choice of function gM depends on the application and the assumptions the researcher is
willing to make on the basis of the available knowledge about the nature of measurement error. We
only require the following condition on measurement error.

Assumption 1. (Centered Measurement Error) (i) The random vector e is supported on or inside
the known support E|X. (ii) There exists a known measurement error moment gM : X×E|X → RdM

such that
E [gM(x, e)] = 0.

4.3. Measurement Error in Consumption in Survey Data Sets.

In self-reported consumption survey panel data sets, the main source of measurement error may
be in the consumption variable, by construction. However, prices usually are collected through
direct observation in a given market and then merged with the consumption survey data.14 Thus,
it is reasonable to assume that the effective prices are measured precisely. Formally, we require
that the support E|X is such that wp

t = 0 a.s..15

There is evidence that individuals, in recall or self-reported surveys, can overreport or underreport
systematically their consumption of different categories of goods (Carroll et al. (2014), Mathiowetz
et al. (2002)). This means that measurement error in consumption in the survey environment is
often nonclassical. Given this, we impose the following assumption.

Assumption 1.1. (Mean-Budget Neutrality for Survey Data Sets) For all t ∈ T it must be that

E

[ 1
δt
ρ′tct

]
= E

[ 1
δt
ρ′tc∗t

]
.

Assumption 1.1 provides a measurement error moment that allows for nonclassical measurement
error in consumption in the survey environment. In particular, it only requires that a discounted
version of the total expenditure error is nonsystematic. Assumption 1.1 implies that measurement
error in consumption does not alter the weighted mean value of total expenditures. The weights are
the inverse of time discount factors. In other words, mean-budget neutrality captures the idea that
consumers, on average, may remember the total expenditure level better than the actual details.

14Very often the prices data set is collected through a separate observational survey such as in the data set used
in Adams et al. (2014).

15Our methodology has no difficulty in dealing with measurement error in prices together with measurement error
in consumption. However, we take a stand on the restrictions on measurement error given what is known about its
nature in survey environments.
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Note that we can rewrite Assumption 1.1 as

E

[ 1
δt
ρ′twc

t

]
= 0,

for every t ∈ T . The equation above means that the mean-budget neutrality condition requires
measurement error in consumption be orthogonal to the discounted effective prices.

The mean-budget neutrality assumption is compatible with nonclassical measurement error in
consumption, such as wc

l,t ≤ 0 a.s. (wc
l,t ≥ 0 a.s.) for some good category l and all decisions tasks t.

That is, we allow agents to systematically underreport (overreport) consumption on some categories
of goods as long as they equally overreport (underreport) consumption on other categories of goods.
Mean-budget neutrality will fail if measurement error in expenditures is systematic (i.e., every
consumer over-reports expenditures or under-reports expenditures simultaneously). We are not
interested in systematic measurement errors as it may be confounded with behavioral mistakes. For
instance, time-inconsistency may cause over-consumption in the present, which may be confounded
with systematic measurement error under the null hypothesis of exponential discounting behavior.

Note that Assumption 1.1 is a particular example of Assumption 1 with gM satisfying:

gM(x, e) =
(1
d t
ρ′tw

c
t

)
t∈T

,

with support E|X such that wp = 0 a.s.. The number of measurement error constraints is dM = |T |.

Example 2. (Additive Measurement Error) Consider a case where ct,l = c∗t,l + εt,l for l = 1, . . . , L;
and where εt,l ∼ TN[−a,a](0, σ) for l = 1, . . . , L − 1 (from a truncated normal with variance σ
and bounds [−a, a] for some positive a > 0) such that ct,l ≥ 0 a.s.. Assume, moreover, that
εt,L = − 1

ρt,L

∑L−1
l=1 ρt,lεt,l a.s.. In words, the consumers report correctly their total expenditure with

probability 1 while making some mistakes about the budget shares for each good. Measurement
error is defined as wt,l = εt,l. Note that wt,l is independent from δt conditional on c∗t , and by
construction ∑L

l=1 ρt,lεt,l = 0 a.s.. This means that Assumption 1.1 holds.

4.4. Measurement Error in Consumption or Prices in Experimental Data Sets.

Measurement error in consumption in experimental data sets arise due to difficulties in eliciting
the intended choices of the experimental subjects. Indeed, the experimental elicitation of choice may
be subject to random variation due to the subject’s attention to the task, the level of understanding
of the experimental design, and nonsystematic mistakes in actual choice versus intended choice. In
general, there is an imperfect relation between the elicited choice and the intended choice behavior
the experiment tries to measure (Gillen et al. (2017)).

We consider two competing sources of measurement error in the experimental environment in
the context of the budget allocation task due to Choi et al. (2014) and Ahn et al. (2014). Namely,
we separately consider the possibility of measurement error in consumption due to trembling-hand
errors and measurement error in prices due to limited attention. We model the relation between
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the true intended choices and the measured choices with the following assumption that captures
the possibility of trembling-hand errors.

Assumption 1.2. (Trembling-Hand Errors for Experimental Data Sets) For all t ∈ T it must be
that

E [ct] = E [c∗t ] .

Assumption 1.2 requires that measurement error in consumption be nonsystematic or centered
around zero. Namely, for all t ∈ T it must be that

E [wc
t ] = 0.

Following Gillen et al. (2017), limited attention to the experimental task may affect the elicitation
of true consumer behavior. In particular, the experimental design of Choi et al. (2014) and Ahn et al.
(2014) relies on a graphical representation of the budget hyperplane to elicit consumption choices.
We consider the possibility of limited attention to prices that can be thought as measurement error
in prices due to experimental design.

Assumption 1.3. (Limited Attention to Prices for Experimental Data Sets) For all t ∈ T it must
be that

E [ρt] = E [ρ∗t ] .

Assumption 1.3 relaxes the implicit requirement in the deterministic RP framework, that subjects
perceive the budget constraints without any distortion. Note that the graphical experimental device
used by Choi et al. (2014) and Ahn et al. (2014) may make it difficult for consumers to correctly
understand the true prices. We believe that it is desirable to have a RP test of the validity of
the UMT that is robust to the misperception of prices when the distortion is attributable to the
experimental design and is nonsystematic.

This centering condition is also compatible with the behavioral consumer model proposed by
Gabaix (2014) called the sparse-max consumer. The sparse-max consumer behaves similarly to the
static UMT but given misperceived prices. In the presence of measurement error we cannot identify
if the source of limited attention to prices is the consumer’s cognitive limitation or the experimental
design. Nonetheless, we cannot tell apart trembling-hand errors from limited attention errors in
the context of testing for the validity of the UMT.

In the budget allocation tasks implemented by Choi et al. (2014) and Ahn et al. (2014) the
subject is forced to choose in the budget line. Given that in these experimental environments
the total income or wealth is known, the support of measurement error E|X must be such that
ρ∗t
′c∗t = ρ′tct.16 Note that in both the trembling-hand errors and in the limited attention case we

have dM = |T | × L. The number of centering conditions grows with the number of commodities
and the number of decisions tasks.

16In our application, we want to test separately for the validity of the static UMT jointly with trembling-hand
error in consumption or limited attention to prices. Hence, we will assume that prices are perfectly measured in the
former case (i.e., wp

t = 0 a.s.), while assuming that consumption is perfectly measured in the latter case (i.e, wc
t = 0

a.s.).
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4.5. Other Types of Measurement Error in Consumption or Prices.

Even though our main focus is on survey and experimental data sets, our methodology is very
general and can be used in other types of data sets with their corresponding measurement error
constraints. Here we provide a quick overview of these possible cases.

Scanner consumer panel data sets are usually of high quality, thus, measurement error concerns
may be less important. However, in some cases, like in the well known Stanford Basket Scanner
Data Set (Echenique et al. (2014)), there could be measurement error in prices due to unobserved
coupons or discounts. That is, although consumption is measured precisely, the price is likely to be
overreported. In particular, we assume that consumption is measured precisely (i.e., wc

t = 0 a.s.),
and impose the following centering condition.

Assumption 1.4. (Centered Differences in Prices Measurement Error) For all t, s ∈ T it must be
that

E [(wp
t −wp

s)′(ct − cs)] = 0.

The centering condition for measurement error above allows for systematic overreporting or
underreporting of prices. Assumption 1.4 implies that the number of measurement error conditions
is dM =

(
|T |2 − |T |

)
/2. Our Assumption 1.4 is implied by the parametric measurement error

restrictions in Echenique et al. (2014).
Our methodology also allows for imposing moment inequality restrictions on measurement error.

Following Schennach (2014) we can handle conditions of the type:

E [gM(x, e)] ≥ 0,

by introducing an additional slack positive random vector s = (sj)j∈{1,··· ,dM} such that

E [gM(x, e)− s] = 0.

Moment inequalities may be particularly useful for taking into account bounds on consumption or
prices average measurement error (e.g., E [wp

t ] ≤ 0 for all t ∈ T ).17

We can also handle the case when prices and consumption are both measured with error. In
some survey environments prices and consumption may be mismeasured. This may happen in
surveys when prices are also self-reported. In particular, we will generalize the centering conditions
of Tsur (1989) in a nonparametric fashion. We will impose a centering condition on the actual and
hypothetical expenditures. Our RP test has, as a building block, the random expenditures ρ′tcs for
all t, s ∈ T . When s = t we refer to this quantity as actual expenditure and when s 6= t we refer to
this quantity as hypothetical expenditure.

We impose the following assumption:

17Imposing support constraints on measurement error can be handled automatically by appropriately setting the
support E|X.
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Assumption 1.5. (Expenditure Neutrality) For all t, s ∈ T ,

E

[ 1
δt
ρ′tcs

]
= E

[ 1
δt
ρ∗t
′c∗s
]
.

Expenditure neutrality requires that the weighted average expenditures are equal to the true
expenditures. This new condition is stronger that Assumption 1.1. The reason is that measurement
error in both prices and consumption leads to a higher loss of information than in the case in which
only consumption is mismeasured.

5. Econometric Framework

5.1. Characterization of the Model via Moment Conditions

Now, we recast the empirical content of the RP inequalities in a form amenable to statistical
testing. In particular, we write a set of moment conditions that will summarize the empirical content
of s/m-rationalizability. Recall that x ∈ X denotes observed quantities and e = (λ′, δ′,v′,w′)′ ∈
E|X denote the vector of latent random variables. The support E|X depends on the fixed supports
Λ and ∆ that characterizes the particular model of interest. We use PX , PE,X , and PE|X to denote
the set of all probability measures defined over the support of x, (e′,x′)′, and e|x, respectively.
(Recall that the boldface font letters denote random objects.) Define the following moment functions:

gI,t,s(x, e) = 1

(
vt − vs −

λt
δt

(ρt −wp
t )′[ct −wc

t − cs + wc
s] ≥ 0

)
− 1, t 6= s ∈ T ;

g(x, e) = (gI(x, e)′, gM(x, e)′)′.

We end up having k = |T |2 − |T | and q = dM moment functions which correspond to inequality
conditions (gI) and the measurement error centering conditions (gM ), respectively. For instance, for
the case of survey data sets we have q = |T |. Define Eµ×π [ g(x, e) ] =

∫
X

∫
E|X g(x, e)dµdπ, where

µ ∈ PE|X and π ∈ PX .

Theorem 2. The following are equivalent:

(i) A random vector x = (ρt, ct)t∈T is approximately s/m-rationalizable such that Assumption 1
holds.

(ii)
inf

µ∈PE|X
‖Eµ×π0 [ g(x, e) ]‖ = 0,

where π0 ∈ PX is the observed distribution of x.
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Theorem 2 establishes the equivalence between (i) s/m-rationalizability with the centered
measurement error condition and (ii) a system of moment conditions. In other words, the observed
consumption pattern, captured by the random array (ρt, ct)t∈T , can be s/m-rationalized under
the restrictions on measurement error if and only if there exists a distribution of latent variables
conditional on observables that satisfies the RP inequalities with probability 1, for the given
supports Λ and ∆.

Our statistical notion of rationalizability makes clear that when one is dealing with measurement
error, no RP test can decide whether a finite sample is consistent with model m. We can decide
only that the data set is asymptotically consistent with the model as the sample size goes to
infinity. Moreover, even asymptotically, there is no way to differentiate between the notion of
approximate s/m-rationalizability and the notion of exact s/m-rationalizability. Nonetheless, we
can do traditional hypothesis testing and decide at a fixed confidence level whether we reject the
null hypothesis of (approximate) model m consistency under Assumption 1 for a given sample.
Conceptually, our notion of rationalizability corresponds to the extended notion of an identified set
in Schennach (2014).

Note that the test is not yet formally established. We have a set of latent random variables e
distributed according to an unknown µ ∈ PE|X . This problem can be solved nonparametrically
using the the Entropic Latent Variable Integration via Simulation (ELVIS) of Schennach (2014).
The main advantage of the ELVIS approach is that it allows us to formulate a test that can be
implemented in panel data sets suffering from measurement error of the type described only in
terms of observables.

5.2. ELVIS and Its Implications for Testing and Inference

We start this section by showing how the nonparametric results of Theorem 2 can be used to
construct a set of (equivalent) parametric maximum-entropy moment conditions (MEM conditions)
using Schennach (2014). Next, we provide a semi-analytic solution to the MEM conditions. Finally,
we propose a procedure to test for s/m-rationalizability. Following Schennach (2014), we define the
Maximum-Entropy Moment (MEM) as follows:

Definition 7. (Maximum-Entropy Moment, MEM) The MEM of the moment g(x, e), for a fixed
x, is

h(x; γ) =
∫
e∈E|X g(x, e) exp(γ′g(x, e))dη(e|x)∫

e∈E|X exp(γ′g(x, e))dη(e|x) ,

where γ ∈ Rk+q is a nuisance parameter, and η(·|·) ∈ PE|X is an arbitrary user-input distribu-
tion function supported on E|X such that Eπ0

[
logEη(·|·) [ exp(γ′g(x, e|x)) ]

]
exists and is twice

continuously differentiable in γ for all γ ∈ Rk+q.

In words, the MEM h is the marginal moment of the function g, at which the latent variable
has been integrated out. The MEM depends only on the observable random variables.18 The

18The choice of the η(·|·) is inessential since it affects only the nuisance parameter value (Schennach (2014)).
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importance of the MEM is captured in the following result.

Theorem 3. The following are equivalent:

(i) A random array x = (ρt, ct)t∈T is approximately s/m-rationalizable such that Assumption 1
holds.

(ii)
inf

γ∈Rk+q
‖Eπ0 [ h(x; γ) ]‖ = 0,

where π0 ∈ PX is the observed distribution of x.

We emphasize that Theorem 3 provides both necessary and sufficient conditions for the observed
data to be (approximately) s/m-rationalizable. This represents an important gain in power with
respect to any of the averaging-based tests of RP models that are usually used in the presence of
measurement error.

We must stress that we could impose high-level technical assumptions to ensure that the sequence
of random latent variables that approximates model m converges to a proper random variable.
Thus, this limiting random variable would ensure (i) that the infimum in Theorem 3 is attained, and
(ii) that the notion of approximate rationalizability collapses to exact rationalizability. However,
this obscures the fact that any assumption made in that direction has no testable implications.

The remarkable advantage of applying the results of Schennach (2014) to the RP approach is
that it marginalizes out the latent random variables. More importantly, we have a robust statistical
framework with which to test our models in the presence of measurement error. In particular, we
have not made any strong distributional assumptions about λ, δ or u (the heterogeneous tastes).
The only assumptions are the concavity of the utility function, and a centering assumption about
measurement error. In short, the proposed methodology allows us to test s/m-rationalizability
in a robust manner without parametric assumptions about preferences or strong distributional
assumptions about measurement error.19

Remark 5. Theorem 3 does not imply that the distribution of the latent variables (or their support)
is point-identified. In fact, it will always be set-identified.

5.3. Semi-analytic Solution for the MEM for s/m-Rationalizability with Measurement Error

One can directly employ the MEM in Theorem 3 to test model m. However, doing so is
potentially problematic. One possible concern is the fact that the number of MEM corresponding
to the (gI) conditions, k = |T |2 − |T |, grows quadratically with |T |. Moreover, γ0, the nuisance
parameter value at which infimum is achieved, may be set-identified when unbounded (e.g., some of
the components of γ0 may be equal to infinity), which would therefore lead to nonstandard testing
procedures.

19At this point, we can use as an alternative the methodology presented by Ekeland et al. (2010) to deal with
latent variables in our moment conditions.
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Here we show that there exists a semi-analytic solution to the optimization problem where
every component of γ0 that corresponds to the RP inequality constraints is equal to +∞, and
every component of γ0 that corresponds to the measurement error centering constraint is finite
and unique. Thus, for testing purposes (under the null hypothesis of model m), we can restrict the
first k components of γ to be equal to +∞, and then minimize a convex objective function over a
parameter space of lower dimensionality.

Assumption 2. (Nondegeneracy) There exist two subsets of E|X, E ′ and E ′′, with a positive
measure, such that componentwise the measurement error moment is such that supe∈E′ gM(x, e) <
0 < infe∈E′′ gM(x, e).

Assumption 3. (Bounded support) The random array x = (ρt, ct)t∈T has a bounded support.

Assumption 2 rules out cases in which there is no measurement error. Our methodology still
works for cases without measurement error, but in those cases, it is preferable to use the equivalent
deterministic RP benchmark. Assumption 3 is made to simplify the analysis and can be replaced
by tail restrictions on the distribution of x.

Note that the user-specified distribution η(·|·) should obey the same restrictions as the unknown
distribution of latent e. Thus, we impose the following restrictions on η(·|·):

Definition 8. (User-specified MEM distribution) Almost surely in x, the user-specified distribution
η(·|x) satisfies all of the following:

(i) The set Ẽ|X = {e ∈ E|X : gI(x, e) = 0} has a positive measure under η(·|x).

(ii) There exist two subsets of Ẽ|X, E ′ and E ′′, with a positive measure under η(·|x), such that
componentwise supe∈E′ gM(x, e) < 0 < infe∈E′′ gM(x, e).

(iii) For every finite γM ∈ Rq,∫
E|X
‖gM(x, e)‖2 exp(γ′MgM(x, e))dη(e|x) <∞.

The first condition in Definition 8 requires that the support of η allows the inequalities to be
satisfied. The second and third conditions are regularity conditions. This is a definition and not an
assumption, as we can always construct an allowable η(·|·).20 We are ready to present our main
result.

Theorem 4. Given a user-specified measure η(·|·) that satisfies the three conditions in Definition
8, the following are equivalent:

(i) A random array x = (ρt, ct)t∈T is approximately consistent with s/m-rationalizability such
that assumptions 1, 2, and 3 hold.

20Schennach (2014) provides a generic construction that can be used here.
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(ii) For any sequence {γI,l}+∞
l=1 that componentwise diverges to +∞,

lim
l→+∞

min
γM∈Rq

∥∥∥Eπ0

[
h(x; (γ′I,l, γ′M)′)

]∥∥∥ = 0. (1)

The sequence of minimizers of (1), {γM,l}, converges to some finite γ0,M that does not depend
on {γI,l}+∞

l=1 .

(iii)
min
γM∈Rq

∥∥∥Eπ0

[
h̃M(x; γM)

]∥∥∥ = 0, (2)

where
h̃M(x; γ) =

∫
e∈E|X gM(x, e) exp(γ′gM(x, e))1 ( gI(x, e) = 0 ) dη(e|x)∫

e∈E|X exp(γ′gM(x, e))1 ( gI(x, e) = 0 ) dη(e|x) .

Moreover, the minimizer of (2) is finite, and is equal to γ0,M .

Theorem 4 substantially simplifies the conclusion of Theorem 3. First, we need to minimize the
globally convex objective function over a much smaller parameter space (Rq instead of Rk+q, for
survey data sets this means that we have to consider only R|T | instead of R|T |2). Thus, the problem
becomes computationally tractable. Second, if the data is consistent with s/m-rationalizability,
then the minimizer, γ0,M , has to be finite and unique. Finally, for implementation purposes, it
suffices to replace γI by a very large number.21 The intuition behind Theorem 4 is that the RP
inequalities presented here restrict only the conditional support of the latent variables (including
the measurement error). Hence, given the support restrictions captured by the RP inequalities,
only the centering condition comes in the form of moments.

5.4. Testing

Theorem 4 provides moment conditions that are necessary and sufficient for the data {xi}ni=1 =
{(ρt,i, ct,i)t∈T }ni=1 (where n is the sample size), to be approximately consistent with s/m-rationalizability.
Now, define the following sample analogues of the MEM and the MEM-variance matrix:

ˆ̃hM(γ) = 1
n

n∑
i=1

h̃M(xi, γ);

ˆ̃Ω(γ) = 1
n

n∑
i=1

h̃M(xi, γ)h̃M(xi, γ)′ − ˆ̃hM(γ)ˆ̃hM(γ)′.

21Alternatively, we can generate the new measure dη̃(·|x) = 1 ( gI(x, ·) = 0 ) dη(·|x) by sampling from η(·|x) and
then accepting a draw only if the RP inequalities captured by 1 ( gI(x, ·) = 0 ) are satisfied. The last part usually
amounts to solving a linear program for case of R-rationalizability. For details about the implementation see appendix
B.3.
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Let Ω− denote the generalized inverse of the matrix Ω. The testing procedure we propose is due to
Schennach (2014), and is based on this test statistic:

TSn = n inf
γ∈Rq

ˆ̃hM(γ)′ ˆ̃Ω−(γ)ˆ̃hM(γ).

Assumption 4. The data {xi}ni=1 is i.i.d.

Theorem 5. Suppose assumptions 1, 2, 3, and 4 hold. Then under the null hypothesis that the
data is approximately consistent with s/m-rationalizability, it follows that

lim
n→∞

P
(
TSn > χ2

q,1−α

)
≤ α, (3)

for every α ∈ (0, 1).
If, moreover, the minimal eigenvalue of the variance matrix V[h̃M(x, γ)] is uniformly, in γ,

bounded away from zero and the maximal eigenvalue of V[h̃M(x, γ)] is uniformly, in γ, bounded
from above, then, under the alternative hypothesis that the data is not approximately consistent
with s/m-rationalizability, it follows that

lim
n→∞

P
(
TSn > χ2

q,1−α

)
= 1.

6. Empirical Application (I): Testing the Dynamic UMT with Exponential
Discounting in Survey Data

In our first application, we apply our methodology to a consumer panel data set gathered
from single-individual and couples’ households in Spain to test for the statistical dynamic UMT
or equivalently s/ED-rationalizability. This important model is under increasing scrutiny because
experimental evidence tends to find that the behavior of experimental subjects is time-inconsistent.22

Nonetheless, it is important to explore to what extent their finding has external validity.
To address this issue, some researchers have turned to survey data in the form of household

consumption panels. Most of this survey work has found evidence against exponential discounting.
However, the existing literature has not yet addressed the issue of measurement error in the
consumption reported by households in a way that allows us to perform traditional hypothesis
testing. (Some additional problems with the existing evidence are (i) the strong parametric
assumption on preferences, and (ii) homogeneity restrictions on the discount factor and preferences.)

One solution to some of the problems in the literature can be found in the work on deterministic
RP by Browning (1989). In particular, Browning’s work avoids making parametric assumptions
about the functional form of instantaneous utility. However, this work does not take into consid-
eration the fact that consumption quantities can be mismeasured. Blow et al. (2017) apply the

22See, for instance, Andreoni and Sprenger (2012), Montiel Olea and Strzalecki (2014), and Echenique et al. (2014).
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deterministic methodology of Browning (1989) to survey data (similar to the data set we use) to
find that less than 1 percent of the couples’ households pass the RP test for exponential discounting.
In addition, when we applied their deterministic methodology to our single-individual households
data set, we also obtained a very low percentage success rate. However, this low success rate of the
deterministic test for exponential discounting may be due to measurement error. In our empirical
application, we found support for exponential discounting behavior in single-individual households,
while at the same time, support for the negative finding in Blow et al. (2017) in the case of couples’
households.

Moreover, in our Monte Carlo experiment, the deterministic test in Browning (1989) rejects
the correct null hypothesis of exponential discounting behavior in 61.5 percent and 62.3 percent of
the cases on average across 1000 trials with samples of size 200 or 1500, respectively, while our
methodology correctly accepts the null hypothesis that all single households are consistent with
random exponential discounting. (See appendix B.2.)

Our empirical application also contributes to the literature on estimating the discount factor
distribution in survey data sets and in a classical consumer theory environment. This has been the
topic of a large body of work which, however, has reached little or no consensus.23 This lack of
consensus can be attributed in some degree to a failure to identify the parameters of interest. Here,
we show that the discount factor distribution cannot be identified solely from prices, interest rates,
and consumption observations in a data set that suffers from measurement error. (For details see
section 8.) In this situation, only the support of the distribution can be set-identified. However,
our methodology allows us to test for exponential discounting behavior even in this setting (i.e.,
without identifying the discount factor distribution).24

If one ignores the issues of measurement error, the Euler equation allows one to estimate the
discount factor and the marginal utility either parametrically or semi-parametrically.25 Since our
objective is not to estimate but to test the exponential discounting model, we follow a different
path. We have focused on ways to eliminate the latent infinite-dimensional parameters (e.g., the
utility functions) by exploiting their shape restrictions and first-order conditions.

In particular, we work with the data set used in Adams et al. (2014): the Spanish Continuous
Family Expenditure Survey (Encuesta Continua de Presupuestos Familiares 1985-1997). The
data set consists of the expenditures for 185 individuals and 2004 couples, as well as prices for
17 commodities (categories of goods) recorded over four consecutive quarters. The categories of
goods are: all food and nonalcoholic drinks, all clothing, cleaning, nondurable articles, household
services, domestic services, public transport, long-distance travel, other transport, petrol, leisure
(four categories), other services (two categories), and food consumed outside the home. The data

23We refer the reader to the survey by Frederick et al. (2002), for its extensive references, since we focus here only
on the immediate antecedents to our work.

24In order to learn more information about the discount factor distribution, one needs additional data. One
notable example is Mastrobuoni and Rivers (2016), which uses a quasi-experiment to pin down criminals’ time
preferences.

25Examples of estimators of the Euler equation and similar models include Hall (1978), Hansen and Singleton
(1982), Dunn and Singleton (1986), Gallant and Tauchen (1989), Chapman (1997), Campbell and Cochrane (1999),
Ai and Chen (2003), Chen and Ludvigson (2009), Darolles et al. (2011), Chen et al. (2014), and Escanciano et al.
(2016).
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set also contains information on the nominal interest rate on consumer loans faced by the household
in any particular quarter.26

Some notable studies in the deterministic RP context that have used this Spanish household
consumer survey are Beatty and Crawford (2011), Blow et al. (2013) and Adams et al. (2014). The
conclusion that we draw from applying the deterministic methodology used in Browning (1989) and
Blow et al. (2017) to the sample of interest is that the exponential discounting hypothesis is rejected
for a substantial fraction of single-individual and couples’ households. That is, a sizable fraction
of households behave in a manner inconsistent with the predictions of the model. In contrast, we
find, at the 95 percent confidence level, that the exponential discounting model with measurement
error cannot be rejected for single-individual households. This fact indicates that deterministic
tests may not be very informative about the behavior in a population, due to measurement error.
Small violations of the deterministic RP inequalities will lead to big rejection rates. Introducing
measurement error into the analysis takes these small violations into account.27

To the best of our knowledge, we are the first to perform traditional statistical hypothesis testing
of the exponential discounting consumer model in the presence of measurement error in a completely
nonparametric fashion. Our empirical findings suggest that practitioners of the RP methodology
should take into account measurement error in order to be able to conduct traditional hypothesis
testing. Furthermore, we wish to emphasize that our methodology does not require identification
of the distribution of the discount factor. Nevertheless, we still can construct confidence sets for its
support.

Formally, we test for s/ED-rationalizability with (i) effective prices equal to the discounted
spot prices, ρt = ρED

t (defined in Table 1), (ii) random marginal utility of income equal to the
discounted value of one unit of wealth, λt = 1 a.s., and (iii) δt = dt where d is interpreted as
the (time-invariant) random discount factor supported on or inside (0, 1]. We allow for flexible
support of the random discount factor, and we assume that it is compact. Formally, denote d as
the random discount factor that depends on parameter θ0. We impose Assumption 5.

Assumption 5. (Compact Support) The random discount factor has support contained in Dθ0 =
[θ0, 1], where 0 < ε ≤ θ0 ≤ 1 for some ε > 0.

The parametrization in Assumption 5 is not restrictive, and can easily be replaced by any
parametric restriction on the support of the discount factor by allowing a flexible upper bound of
the support. For instance, instead of a compact interval, one could assume that support is discrete
or a finite union of disjoint compact intervals. There is some evidence in experimental setups that
supports the restriction that the upper bound of the discount factor distribution is close to unity
(e.g., Montiel Olea and Strzalecki (2014)); thus, we choose the upper bound to be equal to 1. This
is a weak assumption that helps to facilitate the visualization of the present method and simplifies
the optimization procedure. More important, our results are still valid even if this assumption does

26We spare the reader more details and refer them instead to Adams et al. (2014) for further information on the
data set.

27In appendix C, we also establish that our test fails to rejects a special version of the collective household
consumption problem presented in Adams et al. (2014).
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not hold. In case this assumption fails and the null hypothesis is not rejected, we can only conclude
that there is a distribution of the discount factor with support on or inside [θ0, 1]. (Note that θ0

is not a deterministic discount factor, but rather the lower bound of the support of the random
discount factor d.)

For a fixed θ0, we can obtain the support ∆ of the random vector (δt)t∈T with δt = dt. We can
test for s/ED(θ0)-rationalizability, where the dependence on the lower bound on the support of
the discount factor is made explicit. Note that under Assumption 5 for given ε > 0, the support
of the random discount factor for t ∈ T , δt is bounded below by εt (and is bounded above by
1).28 Imposing the additional Assumptions 1.1, 2, and 4, we can apply our testing methodology
developed in section 5.4. Assumption 1.1 implies that measurement error does not alter the mean
discounted value of total expenditure, E [d−tρ′tct] = E [d−tρ′tc∗t ].

6.1. The Results

Single-Individual Households

We apply the deterministic methodology of Browning (1989) to single-individual households.
Our initial conclusion is that 81.1 percent of the single-individual households behave inconsistently
with exponential discounting (even when allowing for substantially more heterogeneity than previous
works).29 Next, we revisit this conclusion using our methodology, which addresses measurement
error, while allowing a heterogeneous discount factor. We find that, at least at the 95 percent
confidence level, we cannot reject exponential discounting. Formally, we find at least at the 95
percent confidence level that the random array x = (ρt, ct)t∈T is s/ED-rationalizable with a random
discount factor d supported on or inside [0.1, 1]. We are also interested in learning more information
about the support of the random discount factor. For that reason, for every fixed θ0 on the
grid {0.1, 0.15, . . . , 1}, we compute TSn(θ0) and compare it with χ2

4,0.95 = 9.5.30 The results are
presented in figure 1. The smallest value of the lower bound of the support of the discount factor
to pass the test is 0.1 (TSn(0.1) = 3.05); for θ0 ≥ 0.55 the test is rejected.31 That means that the
support of d cannot be a subset of [0.55, 1], with at least a 95 percent confidence level.32

28For this particular application we choose ε = 0.10.
29We search for each individual household discount factor d in the grid {0.1, 0.15, · · · , 1}. See Crawford (2010),

Adams et al. (2014) and Blow et al. (2017) for discount factor ranges close to [0.9, 1].
30We again make explicit the dependence of the test statistic on θ0.
31The p-value monotonically decreases from 0.548 for θ0 = 0.1 to 0 for θ0 = 0.95. The p-values for θ0 = 0.5 and

θ0 = 0.55 are 0.056 and 0.035, respectively.
32In other words, we reject the null hypothesis that the random array x = (ρt, ct)t∈T is s/ED-rationalizable with

a random discount factor supported on or inside [0.55, 1]. We provide a pseudo-algorithm of our testing procedure in
the appendix B.3.
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Figure 1 – Values of TSn. The horizontal line corresponds to the 95 percent quantile of χ2
4.

Couples’ Households

For the couples’ households, the deterministic test of Browning (1989) rejects the exponential
discounting model for 88.5 percent of the observations. Although this number seems large, one
should keep in mind that for single-individual households the same deterministic test rejects the
model in 81.1 percent of the cases. At the same time, our method does not reject the exponential
discounting model for single-individual households. But we do reject the model for couples’
households. In the case of couples’ households, the test statistic is above the conservative critical
value based on the χ2

4 distribution.
The test statistic takes its minimum value in the grid search at θ0 = 0.1.33 The value of the

test statistic is TSn(0.1) = 9.86 (the p-value is 0.043). This is above the conservative critical value
χ2

4,0.95 = 9.5.34 Hence, we reject the null hypothesis of exponential discounting for all values of θ0

at the 95 percent confidence level.

6.2. Discussion and Related Work on Testing the Exponential Discounting Model

In our empirical application, we found support for exponential discounting behavior for single-
individual households; this was in contrast with the result of applying Browning (1989) methodology
to our sample. At the same time, we reject exponential discounting behavior for the case of couples’
households. This supports the negative finding in Blow et al. (2017) for a very similar sample
using a deterministic approach. The support we found for exponential discounting behavior for

33We searched for θ0 ∈ [0.1, 1], with a grid {0.1, 0.15, 0.2, 0.4, 0.7, 0.9}. Since we reject for θ0 = 0.1, we do not
need a finer grid, since exponential discounting will be rejected for the rest of the points, as the numerical exercise
confirms.

34The test statistic for the rest of the grid jumps to 11.94 (the p-value is 0.018) for θ0 = 0.15, and then is increasing
in the values of the grid {0.2, 0.4, 0.7, 0.9} until it reaches 1084.279.
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single-individual households may be surprising, given the experimental evidence against exponential
discounting for experimental subjects. However, we believe that this result makes sense, given that
the decision task that we study (i.e., periodically allocating a budget share to a good category for 4
consecutive time periods) for the following reasons. First, the decision task involves higher stakes
than an experimental decision task (Halevy (2015)). Second, the consumer may have developed
some expertise at the decision task given its repetitive nature (Choi et al. (2014)). Third, the
consumer may be time-consistent for budgeting decisions such as how much of the budget share will
be allocated to food versus recreation every month, yet may be time-inconsistent in more granular
decisions.35. We can think of a two-system decision-making framework with a mental-budgeting
first step that is used to decide budget shares for big categories of goods, and a second (possibly)
time-inconsistent system that uses the first state budgeting as a given constraint (Sulka (2017)).

One possible concern about our methodology is that its power is low in survey data sets (due
to a small T dimension of the data), given its nonparametric nature. However, in the appendix
B.2 we report, for 1000 trials with a sample size of 1500, a rejection rate greater than or equal to
69 percent (with a data-generating process consistent with hyperbolic discounting). At the same
time, when the data-generating process is consistent with exponential discounting, as expected, the
rejection rate is close to the theoretical 5 percent (7.9 percent).36

Our results for couples’ households provide the first nonparametric evidence which is robust to
measurement error and which demonstrates that not all couples’ households manifests behavior
consistent with exponential discounting. We must emphasize that s/ED-rationalizability is rejected
with a very weak assumption about measurement error in the couples’ case, while it is not rejected
in the single-individual household case. This should convince practitioners about the importance
of modeling intrahousehold decision-making when dealing with intertemporal choice. While the
exponential discounting model seems to be a good model for single individuals, it fails for couples.
In appendix C, we establish that a suitable extension of our methodology, fails to reject the
collective household consumption problem presented in Adams et al. (2014). Given the support for
exponential discounting for single-individual households, this finding is not surprising.

The rejection of exponential discounting behavior for couples’ households can be better under-
stood given new theoretical results that show that aggregating time-consistent preferences may
lead to time-inconsistent behavior (Jackson and Yariv (2015)).

The deterministic methodology of Browning (1989) concludes that 81.1 percent of single-
individual households are inconsistent with the exponential discounting model, while, concluding
that 88.5 percent of couples’ households are inconsistent with this model. The fraction of households
that is inconsistent with exponential discounting under the deterministic test is similar for both
cases, but our statistical test rejects in the latter case while reaching the opposite conclusion
in the former case. Consider a hypothetical case in which all households pass the deterministic
test; in that case, they would also pass our stochastic test. Given this fact, the rejection of

35For example the consumer may be more prone to temptation when deciding how much ice cream she wants to
buy when she visits the supermarket, but may remain time-consistent in terms of the total expenditure for food in a
given month

36In addition, our methodology rejects the null hypothesis of s/ED-rationalizability for single-individual households
when the heterogeneity of the random discount factor is too small.
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exponential discounting is driven by the fraction of couples’ households that is not consistent with
the deterministic test. The difference in conclusions is due to the fact that our test implicitly
takes into account the severity of the violations of exponential discounting, and imposes the
mean budget-neutrality assumption on the measurement error corrections. Clearly, for the case of
single-individual households, the violations of the empirical implications of exponential discounting
must be either small or compatible with the mean budget neutrality (i.e., the violations are
nonsystematic). This is not the case for couples’ households.

Our findings for the support of the random exponential discount factor for the single-individual
households imply that we cannot reject the fact that the lower bound of the heterogeneous discount
factor θ0 belongs to [0.1, 0.55) (i.e., the random discount factor is supported on or inside [θ0, 1]). This
lower bound is substantially smaller than the lower bounds previously considered in the literature
(e.g., Adams et al. (2014), and Blow et al. (2017) consider a lower bound close to 0.9).37 This
lower bound is, however, consistent with experimental evidence that has found some experimental
subjects with low discount factors (Montiel Olea and Strzalecki (2014), Echenique et al. (2014)).
Our methodology does not permit the unique recovery of the distribution of the random discount
factor.38 In this sense, having low discount factors in the support does not imply that the fraction
of such households is sizable. We emphasize that allowing for a broader support for the discount
factor weakens the discriminatory power of the test, which makes the rejection of exponential
discounting for couples a severe one. We conclude that both (large) heterogeneity of the random
discount factors and measurement error are needed in order to s/ED-rationalize the sample of
single-individual households.

Beatty and Crawford (2011) test for static utility maximization in a similar data set using a
predictive success measure at the individual household level. They are concerned about measurement
error in prices. Our main result is robust to price measurement error. Adding an additional source
of measurement error would make the rationalizability notion less demanding. For our main finding,
if we rationalize the single-individual data set without general cases of measurement error, then it
will be rationalized if we allow for (nonsystematic) measurement error in prices.

7. Empirical Application (II): Static UMT in Experimental Data Sets with
Trembling-Hand Errors and Limited Attention

In this section, we use our methodology to test the static UMT in the widely known experimental
data set by Ahn et al. (2014). The experimental task consists of T = 50 independent decision trials,
with n = 154 subjects. Each decision is a portfolio problem. The subjects face three states of the
world σ ∈ {1, 2, 3}. The subjects are given 100 tokens per task and they have to choose a bundle

37Given that the deterministic tests typically reject exponential discounting, this is not informative.
38However, we can still ask questions about some characteristics of the random discount factor distribution, such

as moments or quantiles. We discuss this more extensively in the recoverability section (section 8).
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of Arrow securities, ct ∈ R3
+, for a randomly drawn price vector pt ∈ R3

+ \ {0}. The subjects are
forced to choose a bundle that satisfies Walras’ law such that for every decision task it must be that
p′tct = 100. The subjects receive a payment in tokens according to the probability of of each state
of the world at the end of each round. At the end of the experimental task one of the rounds was
selected using a a uniform distribution and the tokens payment corresponding to the that round is
payed in dollars.39 The exchange rate is 0.05 dollars per token, the participation fee is 5 dollars.

This ingenious experimental device has allowed the RP practitioners to collect a large number
of observations per individual with high price variation. Beatty and Crawford (2011) highlighted
the importance of enough price variation to have enough power in the experimental design to detect
violations of the UMT.

The deterministic RP test for the static UMT in this data set concludes that only 12.98% of
the experimental subjects pass the test. At first sight, this is a striking result, because the majority
of subjects seem to be inconsistent with the core consumer model in economics. We reexamine the
robustness of this result to measurement error in consumption, due to errors in the elicitation of
the intended behavior of consumers.

Measurement error in the experimental environment may arise due to the nature of the design.
Subjects are presented with a graphical representation of a 3 dimensional budget hyperplane,
and they must choose the consumption bundle by pointing to a point in this hyperplane using
a computer mouse or the arrow keys in a keyboard. We must note that there is a mechanical
measurement error due to the resolution of the budget hyperplane which is 0.2 tokens. More
important factors, such as a lack of expertise in the decision task, or low stakes due to insufficient
compensation, could led the consumers to make mistakes when trying to choose their preferred
alternative. The actual reason why the experimental design fails to elicit the intended decision
task is not our main concern. We take the stand that a desirable test of the static UMT has to be
robust to possible nonsystematic mistakes arising from any experimental design. We consider both
trembling-hand errors in consumption and nonsystematic limited attention to prices. Formally,
we test for s/R-rationalizability with (i) effective prices equal to the prices at each trial ρt = ρR

t

(defined in Table 1), (ii) marginal utility of wealth (λt)t∈T supported on Λ =|T |++, and (iii) random
discount factor equal to 1 (δt = 1 a.s. for all t ∈ T ).

Trembling-Hand Errors in Consumption

We say that measurement error in consumption is the result of a trembling-hand, when it
is centered at zero. This idea is captured in Assumption 1.2 that requires that for all t ∈ T it
must be that E [wc

t ] = 0. Also, we keep the restriction that the true prices and consumption
satisfy Walras’ law p∗t ′c∗t = 100 a.s., and that prices are measured perfectly wp

t = 0 a.s.. Arguably,
mistakes that are centered around the true or intended consumption should not be considered as
systematic deviations from the static UMT. We strongly reject the null hypothesis of the static

39The subjects are informed that the probability of state σ = 2 is 1/3, and the joint probability of the states
σ ∈ {1, 3} is 2/3.
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UMT when allowing for measurement error in the elicitation of the true consumer behavior due to
trembling-hand errors. The test statistic is TSn = 214.355 (the p-value is 0.0004). This is above
the conservative critical value χ2

150,0.95 = 179.5806.40 Given this new empirical fact, we focus on
measurement error in prices.

Limited Attention to Prices

We consider the possibility of measurement error in prices arising from misperception or limited
attention. We investigate the case where consumers behave as if they are trying to maximize a utility
function subject to a misperceived vector of prices. In this regard, we take the point-of-view of
Gillen et al. (2017) that points out that limited attention in a low stakes experimental environments
may affect the external validity of the conclusions drawn from an experimental data set.41 We
require that consumers’ average perception of prices is unbiased, namely, for all t ∈ T it must be
that

E [ρt] = E [ρ∗t ] .

This is captured in Assumption 1.3. In order to isolate the effect of limited attention on the
observed violations of the static UMT, we assume that consumer behavior is measured perfectly
(wc

t = 0 a.s.). In addition, due to the experimental design in Ahn et al. (2014) it must be that true
prices are such that ρ∗t ′ct = ρ′tct a.s..42 The value of the test statistic is TSn = 10.211 (the p-value
is numerically equal to 1). This is below the conservative critical value χ2

150,0.95 = 179.64.43 We
do not reject the null hypothesis of the static UMT in the presence of limited attention to prices,
when the average vector of prices is equivalent to the true vector of prices.44 More importantly, this
finding puts in perspective the rejection of the traditional static UMT in experimental data sets
that use the graphical representation of budget hyperplanes (Choi et al. (2014), Ahn et al. (2014)).
In particular, we find evidence that prices misperception (or limited attention to prices) matters.
When we account for this possibility, we no longer reject the null hypothesis of the static UMT.

40We used 2970 draws in the Monte Carlo computation of the MEM of this problem. We also tried 580 and 899
with test statistics with values of 215.94 and 200.70. Which is evidence that moderate size of draws for the Monte
Carlo integration step do relatively well in this setup.

41This type of consumer behavior has been studied by Gabaix (2014) under the name of the sparse-max consumer
model.

42The experimental design in Ahn et al. (2014) forces the subjects to satisfy Walras’ law.
43We used 899 draws in the Monte Carlo computation of the MEM of this problem. We chose this number on the

basis of the previous empirical exercise in this experimental data set.
44This also lends support to the sparse-max consumer model of Gabaix (2014). Due to measurement error we

cannot distinguish between some variants of the sparse-max consumer and the static UMT. However, we believe that
given that there are only 3 goods prices misperception is due to the design and not due to cognitive bounds which is
what the sparse max consumer model describes. It should be clear from taking expectations over the first-order
conditions that Assumption 1.3 has empirical bite. Our conditions are necessary and sufficient, hence, we have
exhausted the empirical implications of the UMT in this situation.
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Figure 2 – Fraction of subjects satisfying κ-UMT.

7.1. Relationship with the AEI

The traditional solution to the "all-or-nothing" nature of the deterministic RP approach has
been to compute measures of departures from the static UMT (Afriat (1967), Echenique et al.
(2011)). For the experimental data set of interest, Ahn et al. (2014) compute the AEI for all
subjects in the sample to conclude that the departures from rationality are not important. The
AEI is a well-known goodness-of-fit measure for the UMT. In particular, an AEI of κ ∈ (0, 1] is
interpreted as the efficiency level of the consumer choices. In particular, the consumer could have
spent a fraction κ of the actual expenditure to reach the same level of welfare. A subject with
κ < 1 satisfies the UMT only if all expenditures are shrank by κ (we call this the κ-UMT). The
fraction of subjects satisfying the κ-UMT for several levels of κ is presented on figure 2. For an
AEI of 0.5, roughly 94 percent of subjects are consistent with the UMT. Ahn et al. (2014), on the
basis of the AEI, conclude that the behavior of consumers in this experimental data set is not far
from rationality.

However, the AEI has one key drawback, it is unclear how we can map the AEI to the standard
statistical hypothesis testing framework. In addition, it is unclear whether high levels of the AEI
are related to nonsystematic mistakes. In particular, if a consumer is making systematic mistakes
then the UMT may not be a complete description of the consumer’s behavior. Finally, there is no
consensus nor theoretical guidance to choose a particular cutoff of the AEI to declare a subject’s
behavior consistent with the static UMT. Our methodology is able to address all of these issues
in a unified way. In particular, our findings reject the null hypothesis of the validity of the static
UMT when allowing for trembling-hand errors which can be interpreted as errors in optimization,
in this sense, our findings seem to contradict the conclusions from the AEI by Ahn et al. (2014).
We emphasize that goodness-of-fit measures such as the AEI are not exactly comparable to our
approach. Our methodology will accept the consistency of a data set with a given model when
violations are high according to goodness-of-fit measures, if those violations are nonsystematic (i.e.,
the violations are compatible with the centering condition).
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8. Recoverability and Counterfactuals

Our general methodology allows us to answer important questions about the recoverability of,
and counterfactual predictions for, different objects of a model of interest. In section 8.1 we start
by showing how to recover different quantities of interest (e.g., average true consumption at a given
t = τ , the support of the discount factor, or the expected value of the random discount factor) from
the s/m-rationalizable data set. In section 8.2 we then demonstrate how to make out-of-sample
predictions for expected consumption in a way that is analogous to Blundell et al. (2014). In the
presence of measurement error, distributional information about the primitives of the model of
interest is inevitably lost. Hence, we cannot apply the traditional approach proposed by Varian
(1982) to recover preferences and to do counterfactual analysis on an individual basis. Instead, we
use this section to pose questions about the primitives of the model at the level of the population.

8.1. Recoverability

Recall that x and e denote respectively the observed quantities and the latent random objects.
Suppose that there is a finite-dimensional parameter of interest θ0 ∈ Θ, where Θ is a compact
subset of the Euclidean space. The parameter of interest is related to the model via the known
function gR : X × E ×Θ→ RdR such that

Eµ×π0 [ gR(x, e; θ0) ] = 0.

Given function gR, the RP inequality restrictions gI , and the measurement error constraints gM ,
we can define a new set of MEM as follows:

h̃MR(x; θ, γ) =
∫
e∈E|X gMR(x, e; θ) exp(γ′gMR(x, e; θ))1 ( gI(x, e) = 0 ) dη(e|x)∫

e∈E|X exp(γ′gMR(x, e; θ))1 ( gI(x, e) = 0 ) dη(e|x) ,

where gMR(x, e; θ) = (gM(x, e)′, gR(x, e; θ)′)′.
The function gR can take different forms depending on the different questions the user wants to

answer. We provide some examples here.

Example 3. (Expected True Consumption/Expected True Consumption Change) If θ0 is the
expected true consumption at t = τ , then gR(x, e; θ0) = cτ −wcτ − θ0. If θ0 is an expected difference
in true consumption at t = τ + 1 and t = τ , then gR(x, e; θ0) = cτ+1 − wcτ+1 − cτ + wcτ − θ0.

The user may also be interested in testing the joint null hypothesis that (i) the consumer is
s/ED-rationalizable and (ii) the random discount factor distribution has certain properties.

Example 4. (Average Random Discount Factor) The user may be interested in testing whether
the average value of the random discount factor is equal to a certain fixed value, in which case
gR(x, e; θ0) = d− θ0.
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In addition, our framework allows us to have, as a special case, latent random variables with
flexible support (that we consider in our empirical application).

Example 5. (Support of the Random Discount Factor) The user may be interested in whether the
random time-discount factor d has a support on or inside [θ01, θ02] ⊆ (0, 1]. Then, for θ0 = (θ01, θ02)′,
one can define gR(x, e; θ0) = 1

(
θ01 ≤ λ−1

1 ≤ θ02
)
− 1.

As in section 5.4 we can define the sample analogues of the new MEM, the MEM variance
matrix, and the test statistic, as follows:

ˆ̃hMR(θ, γ) = 1
n

n∑
i=1

h̃MR(xi; θ, γ);

ˆ̃ΩMR(θ, γ) = 1
n

n∑
i=1

h̃MR(xi; θ, γ)h̃MR(xi; θ, γ)′ − ˆ̃hMR(θ, γ)ˆ̃hMR(θ, γ)′;

TSn(θ) = n inf
γ∈Rq+dR

ˆ̃hMR(θ, γ)′ ˆ̃Ω−MR(θ, γ)ˆ̃hMR(θ, γ).

Under assumptions similar to those for Theorem 5, the confidence set for θ0 can be obtained by
inverting TSn(θ0). That is, the (1− α)-confidence set for θ0 is

{θ0 ∈ Θ : TSn(θ0) ≤ χ2
q+dR,1−α},

where χ2
q+dR,1−α denotes the (1 − α) quantile of the χ2 distribution with (q + dR) degrees of

freedom (χ2
q+dR

).45 Note that we do not pretest for s/m-rationalizability in order to construct the
confidence set for θ0. If the data set is not s/m-rationalizable, then the confidence set will be empty
asymptotically.

8.2. Counterfactual Out-of-Sample Predictions

We consider a counterfactual situation in which the user is given an out-of-sample deterministic
effective price vector ρT+1 ∈ RL

++, and she then asks two related questions. First, the user
wants to know if there exists a counterfactual random consumption vector cT+1 with support
CT+1 ⊆ RL

+\{0}, such that the augmented random array {(ρt, ct)t∈T , (ρT+1, cT+1)} is approximately
s/m-rationalizable (such that wT+1 = 0 a.s.). (The user is given the support of the extended
marginal utility of income (λt)t∈T ∪{T+1}, ΛT+1 ⊆ R|T |+1

++ ; and the extended random discount factor
(δ)t∈T ∪{T+1}, ∆T+1 ⊆ (0, 1]|T |+1.)

Second, if the answer to the first question is affirmative, then the user will be interested in
constructing confidence sets for some counterfactual finite-dimensional parameter θ0 ∈ Θ. The
parameter θ0 satisfies the user-specified moment condition

E [gC(x, cT+1; ρT+1, θ0)] = 0.
45If gR imposes restrictions only on the support of the latent e, then one can use less conservative critical values

of χ2
q.
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Both questions can be answered simultaneously with our testing methodology in the presence of
measurement error. Observe that the answer to the first question is negative if the random array
x is not s/m-rationalizable. In contrast, if the random array x is s/m-rationalizable and the first
question is answered affirmatively, the second question becomes relevant. In the latter case, the
counterfactual exercise is equivalent to testing the joint null hypothesis that the counterfactual
price/consumption distribution is simultaneously compatible with s/m-rationalizability and the
user-specified moment condition. Formally, to answer both questions, we define what it means
for a random array x to be counterfactually rationalizable in the presence of measurement error
(C/m-rationalizability) for a given ρT+1, θ0, and gC .

Definition 9. (C/m-rationalizability) For a given ρT+1 and θ0, a random array x is said to be
C/m-rationalizable if there exist a tuple

(u, (λt, δt)t∈T ∪{T+1}, (wt)t∈T ∪{T+1}, cT+1),

such that:

(i) u is a random, concave, locally nonsatiated, and continuous utility function;

(ii) (λt, δt)t∈T ∪{T+1} is a positive random vector, interpreted as the marginal utility of income,
and the random discount factor respectively supported on or inside a given ΛT+1 ×∆T+1 ⊆
R
|T |+1
++ × (0, 1]|T |+1;

(iii) (w)t∈T ∪{T+1} = (wc
t ,w

p
t )t∈T ∪{T+1} is a random array that defines (c∗t ,ρ∗t ) = (ct−wc

t ,ρt−wp
t ),

for t ∈ T supported on or inside C∗t×P∗t ⊆ RL
+ \ {0} × RL

++, with wc
T+1 = wp

T+1 = 0 a.s.;

(iv) cT+1 is a random (counterfactual) consumption vector supported on or inside CT+1 ⊆ RL
+\{0};

(v) δt∇u(c∗t ) ≤ λtρt a.s. for t ∈ T , and δT+1∇u(c∗T+1) ≤ λT+1ρT+1 a.s.;

(vi) for every j = 1, . . . , L and t ∈ T ∪{T+1}, it must be that P
(
c∗t,j 6= 0, δt∇u(c∗t )j < λtρt,j

)
= 0,

where c∗t,j, ρt,j, and ∇u(c∗t )j denote the j-th components of c∗t , ρt and ∇u(c∗t ), respectively;

(vii) E [gC(x, cT+1; ρT+1, θ0)] = 0 with θ0 ∈ Θ.

Observe that if a random array x is C/m-rationalizable for a given ρT+1 and θ0, then it is
also s/m-rationalizable. However, the s/m-rationalizability of x does not imply that x is C/m-
rationalizable.

It is straightforward to formulate additional moment conditions that correspond to C/m-
rationalizability. To do so, we define the augmented latent random array ẽ = (e′,vT+1,λT+1, δT+1, c′T+1)′

with known conditional support on or inside Ẽ|X. Note that the random array e, defined earlier, is
supported on or inside E|X, because (λt, δt)t∈T ∪{T+1}, is supported or on inside the known support
ΛT+1 × ∆T+1 ⊆ R|T |+1

++ × (0, 1]|T |+1 (which is compatible with Λ × ∆). Also, vT+1 is a positive
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random variable, and cT+1 is supported on or inside CT+1. We then can define additional moments
as follows:

gO,t,1(x, ẽ; ρT+1) = 1

(
vT+1 − vt −

λT+1

δT+1
ρ′T+1[cT+1 − ct + wc

t ] ≥ 0
)
− 1, t ∈ T ;

gO,t,2(x, ẽ; ρT+1) = 1

(
vt − vT+1 −

λt
δt

(ρt −wp
t )′[ct −wc

t − cT+1] ≥ 0
)
− 1, t ∈ T ;

gO(x, ẽ; ρT+1) = (gO,t,j(x̃, ẽ))t∈T ,j∈{1,2}.

Given the original inequality conditions (gI), the measurement error conditions (gM), and the new
counterfactual conditions (gC), we can now define the new system of moments (g):

gI,O(x, ẽ; ρT+1) = (gI(x, e)′, gO(x, ẽ, ρT+1)′)′;
gC,M(x, ẽ; ρT+1, θ) = (gC(x, cT+1, ρT+1, θ)′, gM(x, e)′)′;

g(x, ẽ; ρT+1, θ) = (gI,O(x, ẽ, ρT+1)′, gC,M(x, ẽ, ρT+1, θ)′)′.

Note that because of the addition of extra latent variables the number of the inequality conditions
has increased by 2T , while the number of the measurement error conditions has not changed. We
let gC(x, cT+1, ρT+1, θ) ∈ Rqc . We can now define a new set of MEM as follows:

h̃C,M(x; ρT+1, θ, γ) =
∫
ẽ∈Ẽ|X gC,M(x, ẽ, ρT+1, θ) exp(γ′gC,M(x, ẽ, ρT+1, θ))1 ( gI,O(x, ẽ, ρT+1) = 0 ) dη(ẽ|x)∫

ẽ∈Ẽ|X exp(γ′gC,M(x, ẽ, ρT+1, θ))1 ( gI,O(x, ẽ, ρT+1) = 0 ) dη(ẽ|x) ,

with γ ∈ Rq+qc .
Now we are ready to present the main result of this section that is an extension of Theorem 3.

Theorem 6. The following are equivalent:

(i) For a given ρT+1 and θ0, a random array x = (ρt, ct)t∈T is approximately C/m-rationalizable
such that Assumptions 1, 2 and 3 hold.

(ii)
inf

γ∈Rq+qc

∥∥∥Eπ0

[
h̃C,B(x; ρT+1, θ0, γ)

]∥∥∥ = 0,

where π0 ∈ P X is the observed distribution of x.

If, for a given ρT+1 and θ0, the random array x cannot be C/m-rationalizable, then the second
question we posed at the beginning of the section must be answered in the negative. Therefore,
this formulation allows us to build confidence sets for θ0 given ρT+1, using the results presented in
section 5.4 (after imposing regularity conditions on the counterfactual moments gC(·)).

Example 6. (Average Varian Support Set) We consider a moment

gC(x, cT+1; ρT+1, θ0) = cT+1 − θ0,
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with θ0 ∈ RL
+ \ {0} as a hypothesized average-demand vector. Given this, we define the Average

Varian Support Set as

{θ ∈ RL
+ \ {0}| inf

γ∈Rq+qc

∥∥∥Eπ0

[
h̃C,B(x; ρT+1, θ, γ)

]∥∥∥ = 0}.

This set describes the bounds of the average demand given ρT+1, that is compatible with the
s/m-rationalizability of the random array x.

Example 7. (Quantile Varian Support Set) For the case of s/R-rationalizability, we can consider
the following moment condition:

gC(x, cT+1; ρT+1, θ) = 1
(
ρ′T+1cT+1 ≤ ēc

)
− α,

where θ = (ēc, α)′ ∈ R++ × [0, 1], ēc is a fixed α-quantile of the counterfactual expenditure
distribution. Next we can define the α-quantile Varian Support Set:{

c ∈ RL
+ \ {0} : ρ′T+1c = ēc, inf

γ∈Rq+qc
‖Eπ0 [ hC,B(x; ρT+1, θ, γ) ]‖ = 0

}
.

This set describes the bounds of the counterfactual demand for a given ρT+1 and α-quantile of
u(cT+1) that is compatible with s/R-rationalizability.

We believe that the Average Varian Support Set and the α-Quantile Varian Support Set are
potentially interesting objects for practitioners of the RP methodology in survey data. In particular,
we note that these objects are similar to the demand bounds proposed by Blundell et al. (2003), in
the presence of measurement error, but without infinite variation in income. We must emphasize
once again that in contrast to Blundell et al. (2014) we do not impose rationalizability but instead
test for it.

9. Conclusion

We propose a new stochastic and nonparametric RP approach (suitable for an environment
with measurement error in consumption) that is useful to test for several consumer models that
can be characterized by their first-order conditions. In particular, our work can be used (but is not
limited) to test for static utility maximization (Afriat (1967)), and for dynamic rationalizability
with exponential discounting (Browning (1989)). We provide Monte Carlo evidence suggesting
that the deterministic RP approach may fail if the observed data has measurement error. The
methodology presented here is able to outperform the deterministic approach in this particular
environment.

We apply our methodology to a widely used consumption panel household survey, and we find
robust evidence against dynamic rationalizability with exponential discounting in the case of couples’
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households. More surprisingly, we cannot reject the hypothesis that the data set is statistically
rationalizable by an exponential discounting consumer model for the case of single-individual
households. This finding goes against the conclusion reached after applying the deterministic RP
approach (Browning (1989)) to the same data set. We believe this is convincing evidence that
taking into account measurement error is crucial for using the RP methodology in survey data.

Acceptance of the exponential discounting model means that in some situations, such as in
our application, consumers may behave in a time-consistent manner. This may happen when
the decision is made frequently, which can lead to developing expertise. More important, the
decisions that we study, in contrast to the low-stakes decisions in laboratory situations, involve
moderate stakes. The consumers may be more likely to exert self-control and behave in a time-
consistent manner when making decisions about purchasing food and services. In our application
the consumers allocate their budget shares among different good-categories, such as food, clothing,
and transportation. Arguably, this type of decision is both repetitive and important enough for
the consumers to be time-consistent. In contrast, for the case of couples’ households we reject the
unitary exponential discounting model, while we fail to reject the collective exponential discounting
model with full efficiency. Our results when compared with the single household evidence suggest
that time-inconsistencies in the consumer behavior in the couples’ case arise due to preference
aggregation.

In our second application, we apply our new RP test in a widely used experimental data
set due to Ahn et al. (2014). We find evidence in favor of the static UMT when allowing for
measurement error in prices due to limited attention. This finding contradicts the conclusions
drawn from the application of the deterministic RP test of Afriat (1967) and Varian (1982) to the
same data set. At the same time, we reject the static UMT when only allowing for trembling-hand
errors in consumption. Failure to reject the static UMT suggests that observed departures from
rationality in experimental setups can be the result of prices misperception due to the experimental
design. Taking together, our empirical findings suggest that ignoring measurement error in the RP
framework can lead to serious overrejection of the UMT.
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A. Appendix

A.1. Proof of Lemma 2

Proof. First we establish that (i) implies (ii). If the random array (ρ∗t , c∗t )t∈T is s/m-rationalizable,
by concavity of u(·), with probability 1 for any s, t and some ξ ∈ ∇u(c∗t )

u(c∗s)− u(c∗t ) ≤ ξ′(c∗s − c∗t ),

ξ ≤ λt
δt
ρ∗t .

43



Let N be a random set of indices such that λt

δt
ρ∗ti = ξi for every i ∈ N. Hence, λt

δt
ρ∗ti ≥ ξi for every

i 6∈ N with probability 1. As a result, c∗ti has to be a corner solution for every i 6∈ N. That is,
c∗ti = 0. Thus, with probability 1,

u(c∗s)− u(c∗t ) ≤ ξ′(c∗s − c∗t ) =
∑
i∈N

ξi(c∗si − c∗ti) +
∑
i 6∈N

ξic∗si =

=
∑
i∈N

λt
δt
ρ∗ti(c∗si − c∗ti) +

∑
i 6∈N

ξic∗si ≤
∑
i∈N

λt
δt
ρ∗ti(c∗si − c∗ti) +

∑
i 6∈N

λt
δt
ρ∗tic∗si,

where the last inequality follows from cs being nonnegative. As a result, with probability 1,

∀s, t ∈ T : u(c∗t )− u(c∗s) ≥
λt
δt
ρ∗t
′[c∗t − c∗s].

For any ε > 0, we let vt = u(c∗t )−mins∈T u(c∗s) + ε a.s., for all t ∈ T . The well-defined positive
random vector (vt)t∈T together with (λt, δt)t∈T satisfies the inequalities in (ii).

Now, we want to prove that (ii) implies (i). The result follows from Theorem 24.8 in Rockafellar
(1970). For completeness of the proof we repeat the arguments of Theorem 24.8 in Rockafellar
(1970). For a finite m ∈ N, let t = {ti}mi=1, ti ∈ T , be a finite set of indices such that for a fixed
t̂ ∈ T , c∗t1 = c∗

t̂
. Let I be the collection of all such indices (i.e., t ∈ I). Define

u(c∗) = inf
t∈I

{
λt1
δt1
ρ∗t1
′(c∗t2 − c∗t1) + · · ·+ λtm

δtm
ρ∗tm

′(c∗ − c∗tm)
}
.

With probability 1, the random function u(·) is well-defined, concave, locally nonsatiated, and
continuous, since it is a pointwise minimum of a finite set of affine functions for every m. Moreover,
the infimum in I is attained and achieved at a set of indices without repetitions (this is a consequence
of (ii)). Indeed, under (ii), for any finite m, {ti}mi=1 and c∗s, s ∈ T , with probability 1,

λt1
δt1
ρ∗t1
′(c∗t2 − c∗t1) + · · ·+ λtm

δtm
ρ∗tm

′(c∗s − c∗tm) + λs
δs
ρ∗s
′(c∗t1 − c∗s) ≥

vt2 − vt1 + vt3 − vt2 + · · ·+ vs − vtm + vt1 − vs = 0.

Thus,
u(c∗s) ≥

λs
δs
ρ∗s
′(c∗s − c∗t1) > −∞

with probability 1. (In particular, u(c∗
t̂
) = 0.)

It is left to show that, with probability 1, λt

δt
ρ∗t ∈ ∇u(c∗t ) for all t ∈ T . Fix some t ∈ T

and δ > 0. By the definition of u(·), there exists some {ti}mi=1 such that, with probability 1,
u(c∗t ) + δ >

λt1
δt1
ρ∗t1
′(c∗t2 − c∗t1) + · · ·+ λtm

δtm
ρ∗tm

′(c∗t − c∗tm) ≥ u(c∗t ). Again, by the definition of u(·),
for any c∗

λt1
δt1
ρ∗t1
′(c∗t2 − c∗t1) + · · ·+ λtm

δtm
ρ∗tm

′(c∗t − c∗tm) + λt
δt
ρ∗t
′(c∗ − c∗t ) ≥ u(c∗).
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Hence,
u(c∗t ) + δ + λt

δt
ρ∗t
′(c∗ − c∗t ) > u(c∗).

Since the choice of δ, t and c∗ was arbitrary, λt

δt
ρ∗t ∈ ∇u(c∗t ) for all t ∈ T .

�

A.2. Proof of Theorem 3

Proof. The result is a direct application of Theorem 2, and Theorem 2.1 in Schennach (2014). For
completeness of the proof we present Theorem 2.1 in Schennach (2014) using our notation below.

Theorem. (Theorem 2.1, Schennach (2014)) Assume that the marginal distribution of x is supported
on some set X ⊆ Rdx, while the distribution of e conditional on x = x is supported on or inside
the set E ⊆ Rde for any x ∈ X. Let h, g and η satisfy Definition 7. Then

inf
µ∈PE|X

‖Eµ×π0 [ g(x, e) ]‖ = 0 ⇐⇒ inf
γ∈Rk+q

‖Eπ0 [ h(x; γ) ]‖ = 0,

where π0 ∈ P X is the observed distribution of x.

�

A.3. Proof of Theorem 4

Recall that the first k = |T |2 − |T | moments correspond to the inequality conditions, and the
last q moments correspond to the measurement error centering conditions. Let γI = (γj)j=1,...,k,
gI = (gj)j=1,...,k, γM = (γj)j=k+1,...,k+q, and gM = (gj)j=k+1,...,k+q be sub-vectors of γ and g that
correspond to inequality and the measurement error centering conditions, respectively.

Proof. Step 1. Take a sequence {γI,l}+∞
l=1 such that every component of γI,l diverges to +∞. Note

that since gI takes values in {−1, 0}k,

sup
x,e

∣∣∣exp(γ′I,lgI(x, e))− 1 ( gI(x, e) = 0 )
∣∣∣ ≤ exp(− min

i=1,...,k
γI,l,i)→l→+∞ 0,

where γI,l,i is the i-th component of γI,l. Hence, for any function f ∈ L1(η(·|x))∥∥∥∥∫ f(e) exp(γ′I,lgI(x, e))dη(e|x)−
∫
f(e)1 ( gI(x, e) = 0 ) dη(e|x)

∥∥∥∥ ≤
≤ exp(− min

i=1,...,k
γI,l,i)

∫
‖f(e)‖ dη(e|x)→l→+∞ 0.

Hence, the sequence of measures exp(γ′I,lgI(x, ·))dη(·|x) converges to the measure 1 ( gI(x, ·) = 0 ) dη(·|x)
in total variation. The later measure is well-defined and nontrivial since we assume that Ẽ|X = {e :
1 ( gI(x, e) = 0 )} has a positive measure under η(·|x). Let dη̃(·|x) denote 1 ( gI(x, ·) = 0 ) dη(·|x).
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Step 2. Consider the moment conditions under dη̃(·|x)

h̃M(x; γ) =
∫
e∈E|X gM(x, e) exp(γ′gM(x, e))dη̃(e|x)∫

e∈E|X exp(γ′gM(x, e))dη̃(e|x) .

Definition 8.(iii) together with Assumption 3 and Step 1 imply that for any compact set Γ ∈ Rq,
uniformly in γM ∈ Γ ∥∥∥Eπ0

[
h(x; (γ′I,l, γ′M)′)

]∥∥∥ =
∥∥∥Eπ0

[
h̃M(x; γM)

]∥∥∥+ o(1).

Thus, by continuity of hM in γM , when l goes to infinity, we can work with the reduced optimization
problem:

inf
γ∈Rq

∥∥∥Eπ0

[
h̃M(x; γ)

]∥∥∥ . (4)

Step 3. Note that (4) is equivalent to the optimization problem in Theorem 3. Hence, infimum
in (4) is equal to 0 if and only if the data is approximately consistent with model m.

We assumed that every component of gM takes both positive and negative values on some
non-zero measure subsets of Ẽ|X (Assumption 2). Hence, following the proof of Theorem 2.1 and
Lemma A.1 in Schennach (2014), we can conclude that if infimum in (4) is equal to 0, then it is
achieved at some finite and unique γ0,M . Otherwise, ‖γM‖ diverges to infinity. �

A.4. Proof of Theorem 5

Proof. The result is a direct application of Theorem F.1 in Schennach (2014). For completeness of
the proof we present the version of it that is applicable to our setting below.

Theorem. (Theorem F.1, Schennach (2014)) Let data be i.i.d.. If (i) the set

Γ = {γ ∈ Rq : E
[∥∥∥h̃M(x, γ)

∥∥∥] ≤ C}

is nonempty for some C <∞; (ii) E
[∥∥∥h̃M(x, γ)

∥∥∥2
]
<∞ for all γ ∈ Γ, then

lim
n→∞

P
(
TSn > χ2

q,α

)
≤ α.

An i.i.d. sample is assumed. To show the validity of conditions (i) and (ii) note that since x
has a bounded support (by Assumption 3) and η̃(·|·) satisfies conditions of Definition 8.(iii), for
any finite γ there exist finite positive constant C1(γ) such that almost surely in x

∥∥∥h̃M(x, γ)
∥∥∥2
≤ C1(γ).

Hence, for any nonempty compact set Γ one can take C = supγ∈Γ C1(γ). Together with Assumption
3, the later implies condition (ii). Similarly, one can use C to bound E

[∥∥∥h̃M(x, γ)
∥∥∥].
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Under the alternative hypothesis,
∥∥∥∥ˆ̃hM(γ)

∥∥∥∥ either converges to a positive constant or diverges to
infinity. Thus, since eigenvalues of Ω̃(γ) are bounded away from zero and are bounded from above
the test is consistent. �

A.5. Proof of Theorem 8

Proof. By Theorem (7) we have that the following inequalities hold a.s.:

vt,A − vs,A ≥
1

dtA
[ρ′t,I(c∗t,I − c∗t,B − c∗s,I + c∗s,B) + pt,H − pt,B∏t

j=1(1 + rj)
′
(c∗t,H − c∗s,H) ∀t, s ∈ T ,

vt,B − vs,B ≥
1

dtB
[ρ′t,I(c∗t,B − c∗s,B) + pt,B∏t

j=1(1 + rj)
′
(c∗t,H − c∗s,H) ∀t, s ∈ T .

Then we multiply the first inequality by dtA, this random variable is positive a.s., so it does not
alter the inequalities. We do the same for the second inequality, and multiply it by dtB. Then we
add-up the two inequalities, to obtain:

dtA(vt,A − vs,A) + dtB(vt,B − vs,B) ≥ ρ′t,I(c∗t − c∗s) ∀t, s ∈ T .

�

B. Monte Carlo Experiments

In this section we study the behavior of our test in two Monte Carlo experiments. In the first
one, we provide evidence for overrejection of the exponential discounting model by the deterministic
test of Browning (1989). In the second experiment, we provide evidence for the power of our testing
procedure with respect to a fixed alternative.

B.1. Overrejection of Exponential Discounting for Browning’s Deterministic Test

The objective of the Monte Carlo simulation exercise is to test the performance of the method-
ological procedure developed in this paper against the deterministic benchmark. We are going to
provide evidence that a data set generated by a random exponential discounter, when contami-
nated with measurement error, will be erroneously rejected by deterministic methodologies at the
individual level for a sizable fraction of the sample (Blow et al., 2013, Browning, 1989). However,
our test will not reject it.
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We choose our simulation configuration setup to match those of the single-individual household
characteristics in our application. The Monte Carlo exercise will deal with a moderate size data set
of n = 200 individuals to show that it works in a data set of the same size in our application. The
sample size is n ∈ {200, 1500}, the time period is T = {0, 1, 2, 3}, and we consider L = 17 goods.
We use the same discounted prices {ρi,t}ni=1 as the ones given in Adams et al. (2014).46 These are
the prices faced by the single-individual households in our application. We consider consumers with
the constant elasticity of substitution (CES) instantaneous utility

u(ct) =
L∑
l=1

c1−σ
t,l

1− σ ,

where σ ∼ U [1/15, 100] is heterogeneous across individuals. The consumers are exponential
discounters with heterogeneous random discount factor d ∼ U [0.8, 1].

Following Browning (1989), the true consumption rule for each consumer and each realized d is
given by:

c∗t,l =
( 1
dt
ρt,l

)−1/σ
,

for all l = 1, · · · , L and t ∈ T . Measurement error is drawn from εt,l ∼ U [0.98, 1.02] which implies
that E[εt,l] = 1. Then observed consumption is equal to true consumption times the multiplicative
perturbation ct,l = c∗t,lεt,l, and we define measurement error as wct,l = ct,l − c∗t,l. We also fix wp

t = 0
a.s.. Note that the implied random measurement error wc

t,l has E[wc
t,l] = 0 by construction. The

random vector ε captures incorrect consumption reporting or recording, and can be as high as 1.02
times the true consumption. This means that relative measurement error is around 2 percent. Also,
we observe that assumption 1.1 is satisfied by the proposed measurement error:

E
[
d−tρ′twc

t

]
= 0 ∀t ∈ T .

This is true because E [ρ′twc
t |ρt,d] = 0, given that E

[
wc
t,l|ρt,d

]
= 0 a.s.. This produces a data

set of (ρt,i, ct,i)i=ni=1,t∈T . We replicate the experiment m = 1000 times. The deterministic test in
Browning (1989) rejects the exponential discounting model in 61.5 (62.3) percent of the cases
on average across the samples for n = 200 (n = 1500), while our methodology accepts the null
hypothesis that all single households are consistent with random exponential discounting (as seen
in Section B.2).

B.2. Power Analysis

We choose our simulation configuration setup to match section B.1 (with a sample size of n =
1500). However, the consumers are sophisticated quasi-hyperbolic discounters with heterogeneous
random discount factor d ∼ U [0.8, 1]. The quasi-hyperbolic discounting behavior is controlled by

46We use the observed price matrix and sample from it uniformly with repetition at each Monte Carlo experiment.
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the present bias parameter β ∈ {0.5, 0.6, . . . , 1}, which is the same for all consumers. When β = 1,
the consumers are consistent with s/ED-rationalizability and our testing procedure should accept
the null hypothesis asymptotically at least with probability 1− α. For β 6= 1 the consumers are
not consistent with s/ED-rationalizability. Thus, for β 6= 1 we should reject s/ED-rationalizability
asymptotically with probability 1.

Following Blow et al. (2017) the consumption rule for each consumer and realized d is given by:

c∗t,l =
(

1
dt
ρt,l

t∏
i=1

1
[1− (1− β)µi]

)−1/σ

, l = 1, · · · , L; t ∈ T ,

where µt ∈ [0, 1] for all t ∈ T captures the individual (realized) wealth effects for each realization
of income level at time t. Note that µt = ∑L

l=1 pt,l
∂c∗t,l

∂at
, where at represents the assets at time

t. Since the CES utility function implies that there is at least one normal good, it follows that
µt ∈ [0, 1]. Therefore, we generate the data set by letting µt be uniformly distributed on [0, 1]. The
randomness of µt captures here the differences in wealth levels across time and across consumers.
The data generating process for measurement error coincides with the one presented in section B.1.
We conduct the experiment m = 1000 times for each value of β.

The results are presented in figure 3. For β = 1, as expected, the rejection rate is close to 5
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Figure 3 – Rejection rates for different levels of the present bias parameter β.

percent (7.9 percent). For β 6= 1 the rejection rates are greater or equal than 69 percent.

B.3. Pseudo-Algorithm

This pseudo-algorithm is based on Schennach’s algorithm provided in GAUSS as a supplement to
Schennach (2014). The actual implementation of the algorithm has been vectorized and parallelized.
We indicate instances that can be vectorized, while parallelization can be done for the integration
step.
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1: Step 0

• Set Tol equal to a chosen tolerance value

• Fix T + 1 the number of consumer experiments (let T = {0, · · · , T}).

• Fix L the number of commodities (let L = {1, · · · , L}).

• Fix repn = (nburn, nsims) the number of Monte Carlo burned draws and effective draws,
respectively.

• Compute the matrix x̂ = (ρi,t, ci,t)i,t for i = 1, · · · , n and t = 0, · · · , T , where n is the
sample size.

• Fix Λ the support of (λt)Tt=0.

• Fix ∆ the support of (δt)Tt=0.

• Fix the bounded support C∗ = C∗t for any t ∈ T (i.e., the lower bound is 0 ∈ RL and the
upper bound c∗t ∈ RL

+ \ {0} is arbitrary large).

• Fix the bounded support P ∗ = P ∗t for any t ∈ T (i.e., the lower bound is above 0 ∈ RL

and the upper bound ρ∗t ∈ RL
++ is arbitrary large).

• Provide a particular η(·|·) ∈ PE|X (i.e, the product measure of η((vt)t∈T , (λt)t∈T , (δt)t∈T , (cl,t−
c∗l,t)t∈T ,l∈L, (ρl,t−ρ∗l,t)t∈T ,l∈L|x) = fλ((λt)t∈T )fδ((δt)t∈T )∏t∈T [fv(vt)

∏
l∈L fw|x(cl,t−c∗l,t, ρl,t−

ρ∗l,t|x)], where the user specified density functions fv (supported on R+), fλ (supported
on Λ), fδ (supported on ∆), and fw|x is the measure associated with cl,t − c∗l,t where c∗l,t
has measure fc∗ supported on C∗ and cl,t is given; and ρl,t − ρ∗l,t where ρ∗l,t has measure
fρ∗ supported on P ∗ and ρl,t is given.

2: end Step 0.
3: Step 1

• Define the matrix functions: gI(x̂i, e) ∈ Rk, and gM(x̂i, e) ∈ Rq for all i = 1 · · · , n (this
step can be vectorized).

• Define the measure η̂(·|x̂i), as η̂(e|x̂i) = ∏k
l=1 gI,l(x̂i, e)η(e|x̂i) for all i = 1 · · · , n (this step

can be vectorized).

• Set r = −burn+ 1

• Initialize the matrix (HM,i,l(γ)) = 0 for i = 1, · · · , n and l = 1, · · · , q.

4: end Step 1.
5: Step 2 (Integration Step) Given γ ∈ Rq
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• For x̂i, draw êi = ((vi,t)t∈T , (λi,t)t∈T , (δi,t)t∈T , (ci,l,t−c∗i,l,t, (ρi,l,t−ρ∗i,l,t)t∈T ,l∈L) proportional
to η̂(e|x̂i), for all i = 1, · · · , n (this step can be vectorized). The user can draw a candidate
from η efficiently and then keep only those candidates that satisfy moments gI .

• Compute the matrix GM(x̂, ê) = (gM(x̂i, êi,r))ni=1 ∈ Rn × Rq

6: While r ≤ nsims

• For given x̂i, draw êjumpi = ((vi,t)t∈T , (λi,t)t∈T , (δi,t)t∈T , (ci,l,t−c∗i,l,t)t∈T ,l∈L, (ρi,l,t−ρ∗i,l,t)t∈T ,l∈L)
proportional to η̂(e|x̂i), for all i = 1, · · · , n (this step can be vectorized).

• Compute GM(x̂, êjump) = (gM(x̂i, êjumpi ))ni=1 ∈ Rn × Rq

• Compute α = GM(x̂, êjump)γ −GM(x̂, ê)γ

• Draw a vector α0 = (α0
i )ni=1 for α0

i ∼ U [0, 1].

• Make the set of indices {i1, · · · , iK} ⊆ {1, · · · , n} such that α0
ik
< αik .

• Set êik = êjumpik
for ik ∈ {i1, · · · , iK}.

• if r > 0

• Compute HM(γ) = HM(γ) + (GM(x̂, ê))/nsims

• end if

• Set r = r + 1

9: end While.
10: end Step 2.
11: Step 3 (Maximization Step)

• Define ĥM(γ) = 1
n

∑n
i=1HM,i(γ) using Step 2 for given γ.

• Define Ω̂(γ) = 1
n

∑n
i=1HM,i(γ)HM,i(γ)′ − ĥM(γ)ĥM(γ)′.

• Find γ∗ = argminγ∈Rq ĥM,l(γ)′Ω̂(γ)−ĥM,l(γ) using NLOPT given tolerance level Tol (we
use Neldermead/Bobyqa, the problem is convex in γ by construction).

• Compute T̂Sn = nĥM,l(γ∗)′Ω̂(γ∗)−ĥM,l(γ∗).

12: end Step 3.
When there is measurement error only in prices or consumption but not in both, sampling

from η̃ can be thought as sampling from a convex polytope given a draw of (λt, δt)t∈T . The user
can employ alternative sampling from polytopes techniques to improve speed if needed (Emiris
and Fisikopoulos (2013)). For our first application (survey data) we choose η to be a uniform
distribution for the random discount factors on the given support, an exponential distribution
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for the true consumption for each good and time period, and an exponential distribution for the
utility numbers. To build η̃ we keep the draws from η that satisfy the corresponding gI (Afriat
inequalities) conditions and the support constraints. This simple strategy works because for short
panels (T = 4) the probability of hitting with a consistent draw is high.

For our second application (experimental data) we use a different strategy since the panel is long
(T = 50), and the centering conditions do not depend on v and δ. We can simplify our problem by
considering a reduced latent random array that consists only of true consumption or true prices. We
then choose η̃ to be a uniform distribution over consumption or prices that satisfy the Generalized
Axiom of Revealed Preferences (GARP). In this case GARP is equivalent to R-rationalizability.
We can do this with the support constraints that we consider in this application. The key for a
good computational performance of this step is to check for GARP consistency in an efficient way
for each candidate draw of prices or consumption. For this purpose, we use a recursive algorithm
to check GARP using an implementation of the deep-first search algorithm with recursive tabu
search (see Boelaert (2014)).

We follow Schennach (2014) and use Neldermead for the optimization step. We verify the
results with Bobyqa (source code supplemented by Schennach (2014)). Alternative optimization
techniques can be used.47

C. Testing for the Collective Exponential Discounting Model in Our
Framework

The important contribution of Adams et al. (2014) studies a dynamic collective consumer
problem to model the behavior of couple’s households. The collective model considers a case in
which the household maximizes a utilitarian sum of individual utilities of each member of the
couple over a vector of consumption of private and (household) public goods, given the individuals’
relative power within the household (Pareto weights). In this sense, each individual member of the
household is an exponential discounter but the observed consumption is a result of the collective
decision making process, and may not be time-consistent. We formulate a test for the collective
model using our methodology. We reject the null hypothesis of consistency of the data set with
the dynamic collective model assuming that the random discount factor is supported on [0.9, 1]
(this support is the one used in Adams et al. (2014)). However, we fail to reject the implications
of the model if we allow for substantially more heterogeneous population (the support of the
random discount factor is [0.1, 1]). This finding is important because the collective exponential
discounting model presented in Adams et al. (2014) could be considered as a potential alternative
to the household exponential discounting model.

Consider a household that consists of two individuals labeled by A and B. Partition the vector
47Sasaki (2015) has proposed a fixed-point method for implementing the ELVIS that seems to have important

computational gains with respect to optimization approaches.

52



of goods into publicly consumed goods indexed by H and privately consumed goods indexed by I.
That is, ct = (c′t,I , c′t,H)′ and pt = (p′t,I , p′t,H)′. Let ct,A and ct,B be the consumption of the privately
consumed goods of individuals A and B, respectively (ct,I = ct,A + ct,B). Then the collective
household problem with exponential discounting corresponds to the maximization of

Vτ (c) = ωAuA(cτ,A, cτ,H) +ωBuB(cτ,B, cτ,H) +
T−τ∑
j=1

[djAωAuA(cτ+j,A, cτ+j,H) + djBωBuB(cτ+j,B, cτ+j,H)],

subject to this linear intratemporal budget constraint:

p′τ,Icτ,I + p′τ,Hcτ,H + st − yt − (1 + rt)st−1 = 0,

where ωA, ωB > 0 are Pareto weights that remain constant across time and represent the bargaining
power of each household member. Individual utility functions, uA and uB, are assumed to be
continuous, locally nonsatiated and concave. The individual discount factors are similarly denoted
by dA and dB. The rest of the elements are the same as in our main model.

The quantities ct,A, ct,B are assumed to be unobservable to the econometrician. We observe only
ct. Adams et al. (2014) propose one solution to the collective household problem above. They assume
full efficiency in the sense that there are personalized Lindahl prices for the publicly consumed
goods pt,H that perfectly decentralize the above problem. The Lindahl prices are pt,A ∈ RLH

++ for
household member A and the analogous pt,B such that pt,A + pt,B = pt,H .

The existence of Lindahl prices allows us to think of members of the household as autonomous
(but interlinked) exponential discounters. Under full efficiency in the collective household problem,
Adams et al. (2014) established the result which is the analog of Theorem 1. Similar to the case of
the single-individual household, define ρt,h = pt,h/

∏t
j=1(1 + rj) for h ∈ {I,H,A,B}.

Theorem 7. (Adams et al. (2014)) An array (ρt, ct)t∈T can be generated by a collective household
exponential discounting model with full efficiency if and only if there exist dA, dB ∈ (0, 1]; strictly
positive vectors (vt,A)t∈T , (vt,B)t∈T ; individual private consumption quantities (ct,A, ct,B)t∈T (with
ct,A + ct,B = ct,I); and personalized Lindahl prices (pt,A, pt,B)t∈T (with pt,A + pt,B = pt,H) such that
for all s, t ∈ T :

vt,A − vs,A ≥ d−tA
[
ρ′t,I(ct,A − cs,A) + ρ′t,A(ct,H − cs,H)

]
,

vt,B − vs,B ≥ d−tB
[
ρ′t,I(ct,B − cs,B) + ρ′t,B(ct,H − cs,H)

]
.

With this result in hand, we can establish our finding in a very straightforward manner. We let
ρt and c∗t be the random vectors of deflated prices and true consumption. Finally, we define dA
and dB as the random discount factors for household members A and B, respectively. Also, uA,uB
and ωA,ωB denote the random utility functions and random Pareto weights for each household
member. We keep here the assumption about the data-generating process that we maintained
for the case of s/ED-rationalizability, namely, we assume that the preferences and Pareto weights
remain stable for each household after being drawn from the joint distribution of (uA,dA,ωA) and
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(uB,dB,ωB) at the first time period. With these preliminaries in hand, we can establish and prove
a stochastic analogue to the result in Adams et al. (2014).

Theorem 8. If a random array (ρt, c∗t )t∈T is generated by a collective household with random
exponential discountings under full efficiency, then there exist random variables dA,dB which are
both supported on or inside [θ0, 1], and strictly positive random vectors (vt,A)t∈T , (vt,B)t∈T that
satisfy

dtA(vt,A − vs,A) + dtB(vt,B − vs,B) ≥ ρ′t(c∗t − c∗s) a.s. ∀t, s ∈ T .

Theorem 8 does not provide sufficient conditions for collective rationalizability. It must be clear
that we can provide a stochastic analogue of Theorem 7, but our choice has several advantages: (i)
one does not need to specify which goods are consumed privately or publicly; (ii) the inequality
restrictions in Theorem 8 do not depend on the unobservable Lindahl prices and private consumption
vectors, which simplifies implementation; and (iii) we can maintain Assumption 1 in a very natural
form. Without loss of generality we assume that household member A is asked to report the total
household consumption expenditure level (which is in fact what the econometrician observes). In
that case, we replace the mean budget-neutrality condition (Assumption 1.1) by the analogous
collective mean budget-neutrality condition.

Assumption 6. (Collective Mean Budget Neutrality) E
[
d−tA ρ′twc

t

]
= 0, for all t ∈ T .

We also assume that prices are measured precisely. Under these conditions we find that the
minimal value attained by the test statistic for the collective exponential discounting model for the
lower bound of the support of the random discount factors dA,dB, θ0 = 0.1, is 8.2 (the p-value
is 0.085), which is below the 95-percent quantile of the χ2

4 (9.5). Thus, we fail to reject the
null hypothesis that the couples’ household data set is consistent with the collective exponential
discounting model under the assumptions of full efficiency, common support for preferences, and
the collective mean budget constraint. However, for θ0 ≥ 0.12, we reject the null hypothesis of the
collective household model with exponential discounting under the efficiency assumption. In fact,
the test statistic for θ0 = 0.12 is 12.1 (the p-value is 0.017). This value is well above the critical
value with at least 95 percent confidence level.48 This results says that the collective model with
full efficiency is rejected if we restrict the support of the random discount factors dA,dB to be on
or inside [0.12, 1]. The failure to reject the model strongly relies on the fact that there is a positive
mass of very impatient individuals. This finding is in line with Adams et al. (2014) deterministic
analysis of the same sample. However, the level of heterogeneity we need to rationalize the data is
significantly bigger. Once again, our results, underscore the importance of taking measurement
error into account when assessing the consistency of a mismeasured data set with a model.

In order to explain the differences in the level of heterogeneity in the discount factor between
our findings and Adams et al. (2014) we present the following reasons. First, we emphasize that

48We also computed the test statistic for θ0 = 0.11 (9.36), thus the test statistic is increasing with the value of θ0
which the expected behavior for our test statistic. Also, the test statistic values for the explored θ0 grid for the
collective model are below those of the exponential discounting model for the sample of couples’ households. Again
this is to be expected given that the collective model generalizes the exponential discounting model.
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Adams et al. (2014) report that about 3 percent of couples households are inconsistent with their
deterministic test. To reach this conclusion they use [0.9, 1] as a support for the random individual
discount factor. Our test is done at the level of the population and thus the rejection of the
collective model, in our case, could be considered as a failure of the model for this fraction of
households that are time-inconsistent. Second, recall that our centering condition implies that
the measurement error is nonsystematic. The small fraction of the population that is inconsistent
with the deterministic test could have been incompatible with the collective model when allowing
for measurement error that satisfies the centering condition. In that case, our test would have
rejected the null hypothesis of consistency with the collective model. Third, we must point out that
our test is applied to the data set without aggregation at the level of categories or commodities,
and, hence, the fraction of couples’ households may be different from the reported 3 percent (in
the deterministic framework). In fact, Adams et al. (2014) aggregate the different commodities of
the original data set into a fewer number of categories in order to better classify them as publicly
consumed goods or privately consumed goods. In contrast, we consider the data set with its original
commodities or categories without further aggregation. Our main advantage is that we do not need
to aggregate commodities because our necessary conditions do not differentiate between privately
and publicly consumed goods inside the household.49 Finally, despite these differences, we fail to
reject the collective model of Adams et al. (2014) when we allow for a larger level of heterogeneity
in the discount factors. This is evidence in support of time-consistent behavior for each individual
inside the couples’ household. The later is in line with our main empirical findings.

49Jerison and Jerison (1994) have provided theoretical results pointing out that commodity aggregation may lead
to either accept or reject static rationality more often.
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